INTERFERENCE

“Light + light does not always give more light, but may in
certain circumstances give darkness.”.

The wave theory of light was first put forward by Huygen in 1678. On the basis of his theory, Huygen
explained satisfactorily the phenomena of reflection, refraction and total internal reflections (TIR).
According to his theory, a luminous body is a source of disturbance in a hypothetical medium, called ether.
The medium pervades all space. The disturbance from the source is propagated in the form of waves through
space and energy is distributed equally in all directions. When these waves carrying energy are incident on
the eye, the optic nerves are excited and the sensation of vision is produced. Huygen's theory predicted that
the velocity of light in medium shall be less than the velocity of light in free space, which is just converse of
the prediction made from Newton's corpuscular theory. The experimental evidence for the wave theory in
Huygen time was very small. In 1801, however Thomas Young obtained evidence that light could produce wave
effects. Very shortly, diffraction was explained by Fresnel and Fraunhofer, while the transverse nature of light
was explained by polarisation experiments. The subject of interference, diffraction and polarisation is called
Physical optics or wave optics and should be explained by using wave theory of light.

The phenomenon of interference of light has proved the validity of the wave theory of light. When two or
more light waves of the same frequency travel in approximately the same direction and have a phase
differ.c_-ncg that remains constant with time, the resultant intensity of light is not distributed uniformly in
Space. The non-uniform distribution of the light intensity due to the superposition of these waves is called
“Interference”, At some points the intensity is a maximum and the interference at these points is called
.“‘-‘OflStrucﬁve interference”. At some points the intensity is a minimum (possibly even zero), and the
{Nterference at these points is called “destructive interference”. Usually when two or more light waves are
Made to interfere, we get alternate dark and bright bands of a regular or irregular shape. These bands are

called interference fringes.

[179]
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The interference of light waves s of two types
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41 WAVEFRONT AND RAYS

4.1.1 Wavefront

Suppose a stone is thrown on the surface of still water. Circular patterns of alternate crests and
troughs begin to spread out from the point of impact. Clearly, all the particles lying on a crestarein
the position of their maximum upward displacement and hence in the same phase. Similarly, all
particles lying on a trough are in the position of their maximum downward displacement and
therefore, in the same phase. The locus of all such points oscillating in the same phase is called 2
wavefront. Thus every crest or a trough is a wavefront.

“A wavefront is defined as the continuous locus of all such particles of the medium
which are vibrating in the same phase at any instant.”

Thus a wavefront is a surface of constant phase. The speed with which the wavefront moves
towards from the source is called the phase speed.

Types of Wavefronts

The geometrical shape of a wavefront depends on the source of disturbance. Some of the
common shapes are :

(i) Spherical wavefront. In case of waves travelling in all directions from a point source, the
wavefronts are spherical in shape. This is because all such points which are equidistant from
the point source will lie on a sphere as
shown in Fig. 4.1 and the disturbance Ray =~

starting from the source Swill reach all é@
these points simultaneously. ) Ray

! =3 1 indrical
(11) Cylindrical wavefront. When ?3233&’51:*

the source of light is linear in shape, , 4
such as a fine rectangular slit, the :ff;?::is
wavefront is cylindrical in shape. This @j g
is because the locus of all such points

which are equidistant from the linear é@
source will be a cylinder as shown in | nt
Fig. 4.2, Fig. 4.1 Spherical wavefront.  Fig. 4.2 Cylindrical s

-t
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(il plane wavefront. As a spherical or
l-ylint'lf‘if"‘l wavefront advances, its curvature
d‘mmst‘s ngmssively. So a small portion of such
,wavefront ata large distance from the source will
pe a plane wavefront as shown in Fig. 4.3.

41.2 Ray of Light
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dicular to the wavefront.

wave is called a ray.”

This illustrates two general principles :
1. Rays are perpendicular to wavefronts.

2. The time taken for light to travel from one
wavefront to another is the same along any

ray.
In case of a plane wavefront, the rays are parallel as
shown in Fig. 4.4.

A group of parallel rays is called a beam of light. In case
of a spherical wavefront, the rays either converge to a point
[Fig. 4.5] or diverge from a point (Fig. 4.6)-

1
i
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Fi ‘
18- 4.5 Rays in converging spherical wavefront.
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[--'" Plane wavefront —

A A

Ray

Lo -

Fig. 4.3 Plane wavefront.

It is seen that whatever is the shape of a wavefront, the disturbance travels outwards along
straight lines emerging from the source i.e., the energy of a wave travels in a direction perpen-

“An arrow drawn perpendicular to a wavefront in the direction of propagation of a

A ray of light represents the path along which light travels. If we measure the separation
between a pair of wavefronts along any ray, it is found to be a constant.

Plane wavefront

Ray

Fig. 4.4 Rays in case of
plane wavefront.

» Rays

Fig. 4.6 Raysin diverging spherical wavefront.

- %2 HUYGEN'S PRINCIPLE OF SECONDARY WAVELETS
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1f Sis the source of light, it sends energy in the form of waves in all directions. After an inaros
of time £, all the particles of the medium lying on the surface AB are }fll’fﬂiinﬂ in the same phua,_-,m
i thus the portion which has been drawn with 8 as centre and mdm.‘«' SAequal to ¢t where Cis the
velocity of propagation of the waves, The surface ABis called the primary wavefront.

In a homogenous medium, for a point source of light, if distance is small, the wavefron is a
sphere, as shown in Fig. 4.7(a).
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Fig. 4.7 Huygen's principle.

If source is at a large distance, then a small portion of the wavefront can be considered to be
plane as shown in Fig. 4.7(b).

This shows that the rays of light, converging to or diverging from a point, give rise to a
spherical wavefront and a parallel beam of light gives rise to a plane wavefront.

According to Huygen’s principle,

All points on the primary wavefront are considered to be centres of disturbance arid |

sends out secondary waves in the all directions which travel through space with the
same velocity in an isotropic medium.

After a given interval of time the envelope of all these se
secondary wavefront.

To find the position of new wavefront after ¢ seconds, take a number of points on ABWith
~each point in turn as centre and radius ct, draw spheres. These spheres represent the seconda®

waves starting from these points respectively. A surface A, B i eres in the
4 ‘touchi spheres
forward direction is the new wavefront. prdmeliiere e

: - e
condary waves gives rise t0 th
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ivision of Wavefront

43 YOUNG'S DOUBLE SLIT EXPERIMENT

.
Thomas Young’, in 1801, demonstrated the phe . /
Jrrangement is shown in Fig. 4.8. phenomenon of interference of light. The

(b)

Fig. 4.8 Young’s double slit experiment.

Sunlight was first allowed to pass through a pinhole §, and then through two pinholes S, and

S, placed at a considerable distance away from 5. Finally the light was received on a screen. The

two sets of spherical waves emerging from S, and 5, interfered with each other and a few coloured

fringes of varying intensity were seen on the screen.

As an improvement of the original arrangement, the pinholes S, and S, are replaced by
narrow slits and sunlight by monochromatic light. The interfering waves are then cylindrical, and
Anumber of alternate bright and dark fringes running parallel to the length of the slits are observed

on the screen.

L Tho ‘ d Bible twice ; by 14, he knew eight languages. In hi
mas Young read f1 lv at thea eofz;bytl,hehadrea X , ges. In his

adult life, he uffas ;hystilsir;;yaid scieﬁtist, contributing to an understandmg of ﬂ_mds, Worl_c, amfl energy and the
elastic properties of material. He was first person t0 make progress in deciphering Egyptian hieroglyphics. No

doubt about it — Thomas Young was bright guy !

i
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Explanation. The formation of bright and dark fringes on the screen can be explained on the
basis of wave theory of light. The cylindrical wavefront starting from S falls on S, and g
According to Huyge;\’s principle, S, and S, become the centres of secondary wavelets. The two
cylindrical wavefronts issued out, one from S, and other from S,.

Their radii increase as they move away from S, and S,, so that they superimpose more and
more on each other. At points where a crest (or trough) due to one falls on a crest (or trough) dye to
other, the resultant amplitude is the sum of the amplitudes due to each wave separately, The
intensity, which is proportional to the square of the amplitude, at these points is therefore ,
maximum. This is a case of constructive interference. At points where a crest due to one wave falls o
a trough due to other, the resultant amplitude is the difference of the amplitudes due to separate
waves and the resultant intensity is minimum. This is the case of destructive interference.

In Fig. 4.8, the solid arcs indicate the crests while the dotted arcs indicate the troughs. The
solid lines are loci of the points of maximum intensity and are called antinodal lines. The broken
lines are the loci of the points of minimum intensity and are called nodal lines. (Actually these
lines are hyperbolas.) In three dimensional space, the antinodal lines describe planes of
maximum intensity, called the antinodal planes while the nodal lines describe planes of minimum
intensity, called nodal planes. The intersections of these lines on the screen at points Band D

respectively give the positions of bright and dark fringes respectively. The bright and dark
fringes occur alternately at equal distances.

Young’s experiment demonstrates both the diffraction of light waves at the slits and the
interference between the light emerging from the slits.

Importance of Young Double Slit Experiment in Physics

Although the double-slit experiment is now often referred to in the context of quantum
mechanics, it is generally thought to have been first performed by the English scientist Thomas
Young in the year 1801 in an attempt to resolve the question of whether light was composed of
particles (Newton’s corpuscular theory), or rather consisted of waves traveling through some
ether, just as sound waves travel in air. The interference patterns observed in the experiment
seemed to discredit the corpuscular theory, and the wave theory of light remained well accepted
until the early 20th century, when evidence began to accumulate that seemed instead to confirm
the particle theory of light.

The double-slit experiment, and its variations, then beca
its clarity in expressing the central puzzles of quantum me

It was shown experimentally in 1972 that in a Youn

at any time, interference was nonetheless observed pro
detected photon could have come from either slit, The

photon density in the system was much less than unj

A Young double slit experiment was not performed with anything other than light until 1961,
when Clauss Jonsson of the University of Tiibingen performed it with electrons and not until 1974

in the form of “one electron at a time”, in a laboratory at th - : . Jed
: : eU earchers
by Pier Giorgio Merli, of LAMEL-CNR Bo] B, o niversity of Milan, by res

me a classic thought experiment for
chanics.

g slit system where only one slit was oper
vided the path difference was such that the
experimental conditions were such that the

ty.
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The results of the 1974 experiment were published

not receive wide.attcntion. The experiment was repeated in 1989 by Tonomura ef al. at Hitachi in
Japan. Their equipment was-better, reflecting 15 years of advances in clectronicé an;i a dedicated
development effort by the Hitachi team. Their methodology was more precieeland elegant, and
their results agreed with the results of Merli’s team, Although Tonomura assérted that tie It’a]ian
experiment had not detected electrons one at a time—a key to demonstrating the wave-particle
pal'adc'x"smgle electron detection is clearly visible in the photographs and film taken by Merli
and his group.

and even made into a short film, but did

4.4 COHERENCE

If a fixed and predictable phase difference between several light waves traveling in a
particular direction be maintained, then we may say the motion is coordinated or coherence. The
corresponding waves are called coherent waves and sources emitting them, the coherent sources.

Coherence effects are mainly two types : (i) Temporal coherence and (ii) Spatial coherence.

4.4.1 Temporal Coherence

If the phase difference at a single point in the bundle of light waves propagating in space, at
the beginning and end of a fixed time interval does not change with time then the waves are said to
have temporal coherence. The phase difference between any two fixed points P, and P, as shown in
Fig. 4.9 along any ray will be indegendent of time but depends
on P, P, and the coherent length” (I,) of light beam, ie., the
distance P, P, <I . The waves will correlated in their rise and
full maintaining a constant phase difference.

If P, P, >1, then the points Py and P, would not maintain
any phase relationship. In that case many wave trains will span
the distance P, P,. At any instant of time the plane at P, and 1.32 S P
will be time independent. The degree of correlation of phases is
'he amount of longitudinal coherence. Fig. 4.9 Temporal coherence.

P,

442 Spatial Coherence : g
The continuity and uniformity of a light waveina direction perpendicular to the directions of

: is sai have spatial coherence if the phase
Propagati : erence. The move 15 said to _ :
Pagation refers to spatial coh 1 to the wave propagation does ot vary with

difference for ' ints in a plane nor

; any two fixed pointsmn a p e

time. I p; e )'[f i ves p on ficld points P, and P; would have phase as shown in Fig. 4.10.
: & &2, 1k ofy =0l3, th tial coherence as the phases of the waves at

'Nce the wave produced by an ideal source exhibit spa
Y two Pointspwhich are 3ffequidistant from the source aré equal. An extended source, however,

Exhibits les
s lateral coherence. :
The de - interference fringes is a measure of the degrea.a of.spahal coherence of
gree of contrast of interte if the contrast is higher.

iy ' ial coherence is better 1
and the wavelength & i.e., [, = NA

The coherent length is the product of the number of waves (N)
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Fig. 4.10 The spatial coherence between two waves.
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4.4.3 Coherent and Incoherent Sources

Two or more sources of light, which continuously emit light waves of same frequency (or
wavelength) with a zero or constant phase difference between them are called coherent sources.

Two or more sources of light which do not emit light waves with a constant phase difference
are called incoherent sources.

45 PHASE DIFFERENCE AND PATH DIFFERENCE

The difference between optical path of two rays, which are in constant phase difference with
each other reuniting at a particular point is known as path difference. For example, let the two
coherent sources traversed different paths and meet at a particular point Pas shown in Fig. 4.11.

S

Coherent

Fig. 4.11 Path difference between two light waves S,Pand S,P.
Then the path difference is given as
Path difference A = S, P-s P
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Phase difference (0) = 2;.*": - ?;x Path difference
Phase difference = ?f « Path dif

46 CONDITIONS FOR CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCE

46,1 Expression for Intensity at any Point in Interference Pattern
Lot us consider a monochromatic source of light Semitting waves of wavelength i 5, and 5,

50 two similar parallel slits of very close together and equidistant from §. [Fig. .12}
X

Fig. .12 Interference of two waves,
_L‘” a, and a, be the amplitudes at Pdue to the waves from 5, and 5, respectively. The waves
reunite after transversing different paths 5; Pand S,P.

Let the phase difference between the waves be ¢,

ie,
- 9=25x(5,P-5,P)
3 A%
fy, and v, are displacements Of two waves as NOTE e |
: By using the principie of superpositien,
ang e L 441) the resultant displacement is equal to
i Yo =8 sin(of +¢) -{(42) the sum of the individual displacements |
%2-_-\,_ of the two o MOre waves.
: 25 V=common frequency SETWOWAVES. ~ 7 cessmosssmrstsescopemeneomremimermtssiassat e
\ce the resultant displacement is
Y=y, +y, =0 sin of +4, sin(o! +9)
Y =a, sinof + 4, sin©f 0SOT & cos it sing
> ) |
Y = sin ot (a, +8, 05 9)+4; Cos f SINY 23
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Now, let
a, +a, cosQ= Rcos6 ---(4.4)

and a,sing= Rsin6 -(4.5)
where R and 6 are new constants ; this gives
Y = sin ot R cos 8+ cos ot Rsin 6 = Rsin(wt +0)
Hence the resultant displacement at P is simple harmonic and of amplitude R.
Squaring and adding the Egs. (4.4) and (4.5), we get
R? (cos? 0+ sin? 0) = (a, +a, cos §)? +(a, sinp)*

S Y. 23
=aj +a, cos” ¢+2a,a, cos p+a, sin” @

‘R%*=a? +0a2 +2a,a, cos ¢ .(4.6)

The resultant intensity I at P, which is proportional to square of the resultant amplitude is
given by

I=R? (4.7)
For simplicity, taking the constant of proportionality as 1.
Thus . .I = a‘lz +a§ +24,a, COS @
Now if | , and I, are the intensities of the interfering light waves, then
I=1,+1,+2 JI.1, cos¢ -(4.8)

Hence, the resultant intensity is not just the sum of the intensities due to the separate waves
Le., (af + a% )-

Suppose a, =a,=a (i.e., amplitudes of two waves are same)
Then I=a%+a% +24> cos @

=24% (1+ cos @) =2a® x2 cos? ¢/2

= 1= 4&22_ cos? —gi .(49)

4.6.2 Constructive Interference

The intensity I is maximum when cos@=+1, ie, when phase difference ¢=2nm, where
n=0,1,12,3,..

Path difference = 2—1— X 2N =n
T

Hence the resultant intensity at a point is maximum when the phase difference between the
two superposing waves is an even multiple of x or path difference is an integral multiple ©
wavelength A This is condition of constructive interference.
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L ™ 4a’ L (4.10)

 then
463 Destructive Interference

heintensity 1is minimum when cos ¢ =1, i, when phase difference g =2+ 1), 71 =0, 1,23, ..
Path difference (S,P - §,P)=(2n £ 1)

Hence the resultant intensity at a point is minimum when the phase difference between the
two superposing waves is an odd multiple of nor the path difference is an odd multiple of %“.This

is condition of destructive interference.

Y D ' )
I in =81 +85 —2a,a, NOTE
29 e e
=(a1 _“2) = [] + 12 =2 }1 12 Thujf» on sF:reen .there fs a vanatlcfn in
the intensity of light being alternatively
Lin <Ii +1, maximum or minimum. This is called
H‘Il =a,, then the ‘interference pattern’.
Imjn =0 ..(4.11)

4.6.4 Conservation of Energy in Interference : Average Intensity
The average intensity is given as

2n 2n
J'Id(p I(af+a§ +2a,a, cos 9)de
0 0

av 2n 2n
[de [de
0 0
_ [a? o+ ag‘ @+2a,a, sin e12" “2n(af +a2) L
® 2n 2n L2
Ly,=T+1, (412)

If ﬂl =a2 =q

..(4.13)

Thus the average intensity is equal to the sum of the separate intensities. That is, whether
8y Apparently disappears at the minima is actually present at maxima. Thus there is no violation

- Ythe)

W of conservation of energy in the phenomenon of interference.

P
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4.6.5 Visibility of Fringes

The quality of fringes produced by interferometric system can be described quantitatively
using visibility (V), which is given by
V= _I..“.'_‘_"‘.‘. - l'..‘?‘“_

! + 1

max min

(4.14)

It was first formulated by Michelson. Here I, and [, are the intensities corresponding to
the maximum and adjacent minimum in the fringe system. There will be best contrast in fringes or
visibility when the difference I, and I_,  is maximum. As we know that

Loax =1+ 1, +2 /11, and [, =1 +1,-2/;1,

2 1.1
Then visibility willbe V = T'J:‘% (4.15)
1 2

4.6.6 Intensity Variation in Interference

Due to interference of two coherent waves the resultant intensity at a point depends on the
phase difference between the waves at that point. As the phase difference is a function of the
position of that point there shall be variation in the resultant intensity from point to point. Further
the intensity is a measure of net energy of disturbance at the given point so there shall be a

non-uniform energy distribution in space. Corresponding to a path difference A, the resultant
intensity at that point is given by

I= af +a§ +2a,a,cos=1; + I, +2.[T, I, coso@
If we plot a graph between

A
resultant intensity I and phase 1 1 i ! ! ' '
difference @. The variation of I and : : : d : : ln
@ will be shown in Fig. 4.13. When : ; : : : :
amplitudes a, and a, are different : . \ : : :
the intensity maxima will have a : : ! 1 ) ] (@
2 2 ! i 1 1
: value (a; +a,)* or (I, +.[1,)? ! ! ! : | :
511 while the intensity minima will have - 6n -4n -2n 0 2n 4n 6n
value (a, —1-12) or (Ji JE) as A -’]
shown in Fig. 4.13(a). ‘ l | ; . |
! ! 1 1 | 1
When the amplitudes are : : : ! : ! J
b equal ie., a; =a, =aor I, =1, =1, ! : ! ) | :
then I, =4a” or I, =4I, and . . ! ! ! .
5 3 | | ]
j I_;. =0 as shown in Fig. 4.13(b). ' ' . i : ; (b)
1 1 1 1 ) !
- 6n —4n = IZT! Lo 2'11: 4.1t én
< o(-)

.‘.} : 5 o(+) —

Fig. 4.13 (a) Energy distribution curve for different valued amplitudes-
(b) Energy distribution curve for equal amplitudes.

et
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: ; ind the resultant it ,
mz’ot;h};zrjc :‘f’:r:;r ut:m:l rrrca‘:::ﬂ;{ eHperposition of two waves y; =2.0sinwt and y, =5.0sin (wt+30°)
Symbo's ‘ ' [GGSIPU, Dec. 2004, (4 marks)]
Solution. According to superposition principle,
Method I
According to superposition principle, we have Y =y, +Y,

Y =y, +y, =2.0sin(wt)+ 5.0 sin(wt +30°)
= 2.0 sin ot + 5.0 (sin ot cos 30°+ cos ot sin30°)

5.0x+/3
2

~ =20sinwt+

; 5.0
sin ot +T cos of

=(2.0+2.5x1.732) sin ot +2.5 cos ot
= 6.33 sin of + 2.5 cos wt
= R cos 0 sin wf+ R sin O cos of
Here Rcos8=6.33; Rsin0=2.5
R? (sin? 0+ cos? 0) = 46.3189
R=6.8
Rsin®
cos 0
0=21.55°

Then Y = Rsin(ot +6)
' = 6.8 sin (ot +21.55°)

=0.394

tanf=

Method I1

i Given a, =2.0, a, =5.0, ¢ —30°, the resultant amplitude

R= 1/(.;% + a% +2a,a, cos30°)

=1/4+25+2x2x5x«f3—/2 =6.8
Rsin®
» =0.394
kano Rcos©
9 =21.55°
Hence Y = Rsin(wt+6)

_6.8sin (of + 21.55°)
io o interfere. Prove that in the interference pattern,

Imax —.Imm .—_-.%—@.
Imu +Imirl 1+

Whey
. € 8Yymbols have their usual meanings-
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Solution. We know that the resultant intensity at a point due to two waves of amplitygeg a
and a, is given by - ;
I=a? +a2 +2a;a, cos®
2
and [ax = (a1 +85)

) =(a1 _az)z

min

=

I 2
Given a=-1 =—;
2 4,
where I, and I, are the intensities of two sources of respective amplitudes a; and a,.Then
2 2
Imax _Imin _ (al +a2) _(al _a2)

T e 2 2
lrrna)( +Im'1n (ﬂl +“2) +(“1 +ag)

4a1a2 _ 2“1“2
2(a3 +a3) a’l" +a§

I
2 [-L
_2yLI, \/; 2Vo
- =———=——. Hence proved.
I +1 1+_Il_ 1+a

I

4.7 THEORY OF INTERFERENCE FRINGES

4.7.1 Expression for Fringe Width

Consider a narrow monochromatic source Sand two parallel narrow slits S, and S, very close

together and equidistant from S. Let2d is the separation between slits 5, and S,. Dis the distance of
screen XY from S, and S,.

Y s
; A a. :nent.
Fig. 4.14 Geometric construction for describing theory of interference fringes using Young double-slit experime”

>
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e S

. FomaSQP (S, P)* = (5,00 +(QP)? = D? 4 (v-a?

- ad fomAS;PR (S,P)* =(S,R)? +(RP)? = D? 4 (x +.d)?

Then, (S,P)* =(5, P)? = (x +d)? +(x—d)?=dxd

= (S,P=5,P)(S,P+S,P)=4xd [+ a®-b% =(a-b)(a+D)]
3 : In Young's experiment, D>1000(2d) and D >1000x

So that (S, P+ S, P) is replaced by 2 D, the error is not more than a fraction of 1%.
(SZP_SI P)2 D=4xd

4xd 2xd x(2d
(8, P=8, By 20 200 XI%0)

D-D- D (4.16)

Position and Spacing of Fringes
Now we shall consider the following fwo cases :
(1) Bright Fringes
Pis bright, when -q)=2_;'rx
where @ be the phase difference, x, the path difference and n is the whole number multiple of
wavelength A.

' ie, S,P-S P=ni, where n=0, 1,2,3,...

I D e i e i C T S el S el e s AT b U g e g e N

G Substituting S, P~ S,P from Eq. (4.16)
9 2xd nA

——

AD
AL ~(4.17)

fH2d
Equation (4.17) gives the distance of the bright fringes fro
Hence, there is a bright fringe.

m O, the path difference is zero.

e The next fringes are when n =1, 2, 3,.-- :gd so on.
’ When ol % =5g
2AD
n=2 X, =-—2'a'—
3AD
n=3 X354
............................ b
n=n-1 Xn =" 2d
nAD
x i
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The distance between any two consecutive bright fringes is

n)D (H I)}vD A.D

(x, =%p1)= 5 ~=~%z 24 ~(4.18)

(1) Dark Fringes.
If point P is dark,
+
Le., S,P-5,P= (2n;1)l where n=0,1,2,3, 4,...

when path difference is an odd number of multiple of half wavelength,

)

Substituting SZP—SI P, from Eq. (4.16)
2xd _ (2nt1)A

D 2
D
or x= %— ..(4.19)

Equation (4.19) gives distances of the dark fringes from point O. The dark fringes are formed
as follows :

AD
Wh =0 mer
en n X0 =47
3AD
n=1 X, =—=
4d
n=2 2 -E-’LD
4d
N S =(2n—1)l
" 4d
2n+1)AD
nH=n X =—
4 4d
The distance between any two consecutive dark fringes is
&, £, ;)= (2n+1)2D (2n- 1)AD 21D = _AD .(420)
4d 4d 4d 2d

Hence, the spacing between any two consecutive maxima and minima is the same- This 5

8 ;
expressed by B(z-?:;—)) and is known as fringe width.

It is obvious from Egs. (4.18) and (4.20), the spacing :
(i) is directly proportional to the wavelength of light i.e., p oc A
(if) is directly proportional to the distance of screen from two sources ie,peD
and (i) isinversely proportional to the separation between two coherent sources 1.

Hence the fringe width (spacing) increases with increase in wavelength and distan
bringing the two coherent sources close to each other. '

ceD

A




INTERFERENCE 195

4.7.2 Shape of the Interference Fringes

S. and S, be the two coh . : -
Let 5 ~2 X f-‘fen_l-sourccs. At the point P, there is maximum and minimum
intensity according to following conditions :

S;P—S,P=m. (maximum)

2
SZP—SIP=(2n:tI)E (minimum)

Thus for a given value of 7, locus of points of maximum or minimum intensity is given by
S, P—S, P = constant ...(4.21)
Which is t.he equation of a hyperbola with S, and S, as foci of hyperbolas. This establishes that
interference fringes are hyperbolas in shape as shown in Fig. 4.15. Since the wavelength of light

waves is extremely small (= 1077 m), the value of S,P—S, P is also of that order. Therefore, the
. eccentricity of fringes is quite large and hence these hyperbolas appear, more or less as straight line.

X
P

|
;

Fig. 4.15 Shape of interference fringes.

4.7.3 Angular Fringe Width
The angular fringe width is defined as the angular separation between consecutive bright and
dark fringes and is denoted by ©

Arc
As An =
gle radius

0=0,.;—9,;= D D D

* ok

g 8 = 2 radian ..(4.22)

|

a source of light of wavelength 4200 A is used to obtain

t should be the wavelength of the light source to obtain
d the slits is reduced to half the initial value ?

- Brample 4.3 In Young’s double slit experiment,
m”")‘"’m fringes of width 0.64x10™> m. Wha
2es 0.46 x 10 ~2 m wide, if the distance between screen an

.!1
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Solution. In first case, A=4200 A=4200x10"""m, P=0.64x10"?m
- 1n-10
0102 £ 200010 X ) [ p=2D
(2d) 3
D
In second case, P=0.46x10"2m, r=2, D:(.Z_J
D
()
“d 2 _ AD |
0.46x107% = TR 0

Dividing Eq. (i) by Egq. (if),

0.64x102 _ 4200x107° x Dx2dx2
0.46x1072 (2d)AD

_ 4200x1071°x2x0.46
- 064

% =6037.5 A

Example 4.4 Show that in a two-slit interference pattern the intensity at a point is given by

I=A+ Bcosz(%x—] _

where A, B and k are constants of the set up and x is the linear distance of this point from the central fringe.
Solution. The resultant intensity at a point due to two waves of amplitudes 4, and a, are
given by
I= af +a§ +24,a, cos @
where ¢ is the phase difference at the point

tp=2—;x path difference =%LE(52P—SIP)=235£

A A

where x is the linear distance of the point P from the central ring, d is the separation between the
sources and D is the distance between slit and screen.

where k is a constant and its value is %

pko 2
I'=aj +a; +24,a, cos kx

kx
=+ 2y 2cost K1) (0, 0,y cos? &
At Bond? %‘_

where A=(a, -a,)? and B=4a,a, are the other constants of the set up.
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Example 4.5 In Young s double sl f’:‘ experiment the angular width of a fringe formed on a distant screen in

- o1° The wavelength of light used in 600 nm. What is the spacing between the slits ?

0.1x3.14
180

A=600nm =6.0x 10~ nm

Solution. Given 0=0.1°= =1.74x103rad ;

We know the angular fringe width
A

24
_A_6.0x1077

Then 2=t = B Ee 10" =034
8 174x1073 p——

E 4.8 CONDITIONS FOR INTERFERENCE OF LIGHT WAVES

To obtain a well defined observable interference pattern, the following conditions must be
fulfilled :
Conditions for Sustained Interference
By sustained interference, we mean that the nature and order of interference at a point of the
medium should remain unchanged with time.
For this to happen there are fwo conditions :
(i) The two sources must be monochromatic, i.e., they must emit light of same wave-

length or frequency.
(i) The two sources must have either no phase difference or if there is a phase difference,

it must remain unchanged with time.

4 If the above conditions are not satisfied the phase difference between interfering waves at a
point will go on changing, and hence the resultant amplitude (or resultant intensity) at the point
- Will go on changing with time. This will result in either uniform intensity or fluctuating intensity at

the point,

Conditions for Good Visibility

: (1) The separation between two coherent sources Le., 2'd sh?uld b'e small so that-the width
of bright and dark fringes formed will increase giving rise to increase resolving power
and hence good visibility of the fringes.

(i) The separation of screen from the two coherent sources i.e., D should be large so that
the width of the fringes increases, and hence they are clearly seen.

(iii) The background in which the fringes are seen should be dark.

o COndmo“s for Good Contrast

5 By good confrast, we mean the difference between the maximum and minimum intensity
- Or the difference between the intensities of bright and dark fringes should be as large as
- Possib]e
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For this the following conditions are necessary :

(i) The amplitude of the two interfering waves must be nearly the same o equal. In ﬂns
case A =0, =a; !

2
I =(a+a)* =4a® and [ . =(a-a)"=0

s0-that the difference between Icand [_. is maximum and equal to 442,

(i) The two light sources should be very narrow. If the sources are wide,
large number of narrow sources giving rise to many interference
overlap on the screen resulting in the decreased contrast.

(iii) Light sources should be monochromatic or should have wavelen

difference, otherwise due to overlapping of interference fringes o
the interference pattern is seen white.

they Contain 5
patterns which

gths with smalle;
f different colours

49 INTERFERENCE BANDS WITH FRESNEL’S BIPRISM

A biprism, as its name suggests,
their two faces making an obtuse
In actual practice the biprism is

is a combination of two thin prisms with their bases joined and
angle of about 179° so that the other angles are each of about3(',
grounded from a single optically plane glass plate.

When a monochromatic source of light illuminates a narrow vertical slit Sheld symmetrically
at a short distance from a biprism ABC with its refracting edge vertical and parallel to the slit, each
half of the biprism produces a virtual image of Sby refraction. The distance between S and the
biprism is so adjusted that the two virtual images S, and S, are quite close together. A horizontal

cross-section of the arrangement is shown in Fig. 4.16. The two sources S, and S, give out light
waves parallel to each other in the constant phase having

the same amplitude. Closely spaced interference fringes NOTE : i
are produced in the superposition region QR, while the These wider fringes .are prdeuced
wide set of fringes at the edges of the pattern is on account by the vertex of the prism which acts
of diffraction®. as a straight edge.

r
9]

N

D

Fig. 4.16 Interference due to biprism.




iNTERFERENCE 199

Theory
As the point O (Fig. 4.17) is equidistant from S, and §,, the displacement will be in the same
ase and so the intensity here is maximum.

To find the intensity at a point P, which is at a distance x from P T
0 we proceed as follows :

.ph

Let 2d be the separation between virtual sources S, S,
and D be the distance between the slits and the screen.

o BT TR
g Then from Fig. 4.17, l / :
e Sz | :

U T o -
i (52P)2 = D +(x+d)? il D

3 2 _ 2 2

and (o B =) Fig. 4.17 Tllustration for theory of

tﬂ : 2 2 2 2 Fresnel’s biprism.

B: (SZP) _(51 P)* =(x+d)" - (x—d)" =4xd

‘ . Path difference S,P-S§ P=4—xd- ..(4.23)
A & TSRS P

!j_'_'_ We assumed here (S,P =5, P)=D, then Eq. (4.23) becomes

_4xd 2xd

S,P-5,P= 5D - D ..(4.24)

3 The intensity at P is maximum if the path difference (5,P~5, P)is an even multiple of half a
- wavelength and minimum if it is an odd multiple of half a wavelength.

For maximum intensity,

3 x(2d)=nl or x=%n?\.
F\ Fringe width B=x, -x,_,
: -D-Bar=2a
= =2
= A= (a2+db)ﬁ i .(4.25)

. Where D=(g+5)

49 Applications of Fresnel’s Biprism

E (a) Determination of the Wavelength of Sodium Light using a Fresnel’s Biprism :
2 The experimental arrangement is shown in Fig. 4.18. The various devices are arranged at the
Same height above the optical bench. As we know that a closely spaced interference fringes are
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produced by a biprism. The fringes are actually anywhere in the space between ‘the biprism and the
eyepiece ; and are called the non-localised fringes. The fringes are observed with the Microscope,
with the fringes lying in the focal plane of its eyepiece,

Slit  Biprism Lens  Eye-piece
Sodium
lamp
S| | | I )
T‘? p |mf[n|||||f|u|nn|||||||||||||lnmll||r|||||r|]l|'r|||[|||ufum] 3
mains

Fig. 4.18 Experimental arrangement of Fresnel’s biprism.

If2d is the distance between 5;and S,, Dis the distance between the slit Sand cross-wire of the
eyepiece, and B is the fringe width, then from Eq. (4.25),

2d
=2

Thus the wavelength A of the monochromatic source can be determined by measuring D, 24
and B.

(b) Determination of the Distance between Two Virtual Sources by Fresnel’s Biprism

The distance between the two virtual sources by Fresnel’s biprism is determined by any of the
following two methods :

(1) Deviation method (if) Displacement method.

(9) Deviation Method. Biprism is constituted by two prisms as already shown in Fig. 4.16.
Since the refractive angle o of each prism is a

bout 30’, therefore, deviation produced by each of
the prism is quite small. If g be the deviation produced by asingle prism then using prism formula,

we get
_sin(a+¢)/2 i a+o
S a/2 [ uz ? and g- are very small then sin—=—
and sin—; are equal to a;(p and g- respectively
= u:wL%:(a-F(P) I_,(4.26)
a /2 o
where p is the refractive index of biprism glass
¢=po-a
vEe@-1) (4.27)

From Fig. 4.16, it is clear that

A total deviation rod : ‘ between the
prism ABC and source Sbe g, ag shown, then welz’.et uced is equal to2¢. If distance
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S8, = 55, =atang = aq

5 2d =5, S, =2aq (4.25)
Gubstituting the value of ¢ from Eq. (4.27) in Eq. (4.28) |
2d =2a(p -1)a A4.29)

(if) Displocement Method. To determine (2d), a convex lens is chosen such that its focal length
~ jsless than one-fourth of the distance between the slit and the focal plane of the eyepiece, The k:m
B s mounted on a stand which is kept between the stands holding the Fresnel’s biprism and the
eyepiece (Fig. 4.19). The lens is so adjusted that for two of its positions the real images of two
virtual sources S, and S, are focused on the plane of eyepiece, If x and y are the separation between

T real images of S, and S, for two positions of the lens.

Micrometer
_____ eyepiece

T ) (B

v
1st position 2nd position
of lens of lens

-
-
-

—

Fig. 4.19 Measurement of 2d (displacement method).

In these positions the magnifications are :
X _ v ¥y v H
m]=§E..:; and m, Tl
. where u and v are the distances of the object and image respectively from the lens in the first
- conjugate positions.

—
24 2d -u -V
B or xy = (2d)*

o 4= G -(4.30)

492 Effect of Increasing the Angle of Biprism on Fringes
increased, the distance 24 between the virtual sources would
D

If the angle « of the biprism be
would reduce the fringe width ( =—-2—&-] . The

 Increase because 24 =2a(y ~1)a. This, in turm,

 fringes yij) not be separately visible and may disappear ultimately.
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4.9.3 Effect of Increasing the Slit Width on Fresnel Fringes

When in the biprism experiment, the width of the slit is gradually increased, the visibility
between the bright and dark fringes becomes poorer and poorer. Ultimately, the fringes disappear,
leaving a uniform illumination everywhere.

Explanation. On increasing the slit width, the two virtual source slits are correspondingly
widened. They are then equivalent to a large number of pairs of narrow slits. All pairs produce
their fringe patterns, which are relatively shifted. This causes partial overlapping of maxima and
minima, due to different pairs, resulting in indistinctness. Greater the width of the source slits,
greater the overlapping when the slit width equals half the fringe width, there is complete
overlapping of maxima and minima and the fringes disappear.

4.9.4 Interference Fringes with White Light

After making adjustments of biprism assembly to get fringes with monochromatic light ; if the
source of monochromatic light is replaced by a source of white light then few coloured fringes with a
central white appear in the field of view. For central white fringe, which corresponds to zero path
difference, all constituent colours of white light form their maxima at this place and therefore, we
get central white as a result of overlapping of all colours. However, for initial orders of maxima
and minima, we know that since fringe width pincreases with wavelength [ =(DA/2d)], therefore
overlapping of different colours takes place and we get fringes of mixed colours with inner edge
red and outer edge violet. For higher orders this overlapping results into uniform illumination.
The reason for this is as follows :

The fringe width for violet is minimum and maximum for red (DA/2d). Therefore, the first
dark band of violet is obtained first and that of red the last on either side of the zero order. The
inner edge of first minimum of violet receives sufficient intensity from red because the maximum
of red falls in its vicinity and the edge is reddish. The first maximum of violet falls close to the inner
edge of minimum of red and the edge appears violet. For points at large distances from the centre,
the maxima and minima due to large number of wavelengths overlap and it results in uniform
illumination. For example, at a point on screen, we may have

=10A; =11, =124,...(For maxima)
Path difference g 1
=(10+5)l1 =(11+E]}\.'2 =(12+%) A% ... (For minima)

Thus at that point we will have 10th, 11th, 12th... bright fringes of s Ay, Ay... and 10th, 11th,
12th,... dark fringes of 1], 2}, A},... Therefore, that point and actually all other points in a similar
way, will show resultant white colour leading to uniform illumination.

4.9.5 Location of Zero Order Fringe in Biprism Experiment

When monochromatic light is used in biprism, alternate bright and dark fringes are obtained
in which all the bright fringes are exactly similar in appearance. Hence it is not possible to locate
the zero order fringe.

To locate zero order fringe, monochromatic light is replaced by a source of white light. NQW
the zero order (central) fringe is white and all other fringes are coloured. Now the vertical Cross| 2
is adjusted on zero order (white) fringe and white light is again replaced by monochromatic ligh®
The vertical crosswire will still be on zero order fringes and thus zero order fringe is located:

el
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~ 410 DISPLACEMENT OF FRINGES

e The determination of the thickness of thin transparent plate (glass, mica, soap solution) by
~ biprism can be understood with the help of Fig. 4.20. S, and S, be two virtual coherent sources
~ derived from a source Sby biprism. SOis the principal axis such that S,0=5,0and therefore, Ois
E e place of zero order maximum and its X

- placeis located by using white light fringes

giving central whitefringe. On interposing a

film of thickness ¢ and of refractive index p in

the path of light from one of the sources, say

S, P, the path difference occurs and results in

the shift of central maximum from O to O'.

* This shift of central white fringe from Oto O'

is measured by means of micrometer screw

provided with the eyepiece. Let the shift

00 =x,. Now we can relate the shift x, to

thickness of plate t and other known physical
quantities in the following way :

Consider a point P on the screen distant x,, from O'to be the nth order maxima. The path
difference for this point from S, and S, with plate of thickness t in the path of S, may be calculated
as follows :
~ Lightfrom S, travelsa path (S, P—t)in air and t is plate of refractive index p. If cand v be the
velocities of light in air and in the glass respectively, then time taken by light from S, to P.

5, P-t t

+—
c v

|
= SIP +_I'E ['." }_l_—.-E:\
(o c v

Fig. 4.20 Thickness of plate of biprism.

_ S, P+(u-1t
é
Thus the air path S, P has been increased by (1 -1)tas a result of introduction of the plate.
Therefore, the effective path difference at the point P
N =5,P~[5;P+(-1)1]

=5,P-5 P-(r-1)t ~(4.31)

_ However, if thin plate was not there then the path change would have been A =(5,P-5,P), as
.aheady given in Eq. (4.24), in which it has been shown that

2d
A=S,P-5P="=x, -(4.32)

Substituting this value in Eq. (4.31), we get

A =‘2ng 1)t (433)

.!x



204  ENGINEERING PHYSICS - 1

——

Now since the condition of path difference (A) corresponding to rth bright fringe at p iy,
presence of plate, therefore,

% X, —(n-1)t=2n % =ni (4.34)
2d
or an =nh+(p-1t
D
or X, = 57 [nA+(u-1)¢t] 4 --(4.35)
But since n=0, for O which shifts to O’ such that
00 =x,
Therefore, we write
D .
=— (u=-1)¢ .-.(4.36
Xg 2d (n-1) (4.36)

Entire fringe system is displaced through this distance as may be seen below.

In the absence of plate (t=0), the distance of nth maximum from P, [by putting =0 in
Eq. (4.35)].

D

=0 ...(4.
>3 n\ (4.37)

Therefore, displacement of rth bright fringe by subtracting Eq. (4.37) from Eq. (4.35)

D D
= ﬁ [n7L+(p. "1) t]_ﬁ nA

D
=5 (=Dt =x, .(4.38)

Since the expression is independent of n, it indicates that all the bright fringes are displaced
through the same amount. It may be shown that dark fringes are also displaced through a distance

ﬁ(u —1)¢. It means that introduction of the plate in the path of one of the in terfering beams displaces the
entire fringe system through a distance E%(u ~1)t towards the beam in the path of which the plate is

introduced.
Now writing Eq. (4.35) for (n+1) th fringe, we get

X1 = [+ DAt (-1 (439)

Subtracting Eq. (4.35) from Eq. (4.39), we get fringe width B, given by
D
B= Xpe1 ™ %n =ﬁ[(n+l)l+(“ “Dt-nh—-(n-1) t]

D
~50" ..(4.40)
or B o (
which is the same as before the introduction of the plate and shows that the presence of plate does not
change the fringe width.
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”/—
. D -
Substituting - from Eq. (4.40) in Eq. (4.38), we get displacement of nth bright fringe,

_D _B
*o =55 (-1t =5 (=Dt ..(4.41)
If the central bright fringe moves through a distance formerly occupied by nth bright fringe, then
Xo=np
E(p -1t=np
A
(-1t ni
s =— (442
T =] (4.42)
It gives us the number of order through which fringe system is displaced and refractive index
of the material of the plate.

Equation (4.42) may be written to give thickness of the plate also

_nk (4.43)
p-1
Thickness of plate is also given by Eq. (4.38) to be
~Fgel) (4.44)
D(u-1)

- Example 4.6 In an experiment with Fresnel’s biprism fringes for light of wavelength 5x 1077 m are observed
5 0 2x1073 m apart at a distance of 1.75 m from the prism. The prism is made of glass of refractive index 1.50 and
- itisat a distance of 0.25 m from the illuminated slit. Calculate the angle of the vertex of the biprism.
Solution. In Fresnel's biprism,

Given that : =5x10"" m, p=02x10""m, a=025m, p=150and b=175m, a=?

We know that distance between virtual sources in Fresnel’s biprism

e 2d=2a(p-1a (1)
- and fringe width =%§
or 0 - A_;J (i)

Where D=(a+b)=(1.75+0.25)m =2.00 m
From Egs. (1) and (i),

% =2a(u-1)a )
AD  _ 5x10~7 x2.00
= BRa@-1)] 02x1073x2x0.25x(1.5-1)
=0.02 radian

Vertex angle ¢ = (n-20) =(n-0.04) =177°42".
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biprism experiment and centrq]

' =1.6) is i d in one of the beams in a
Example 4.7 A thin film (pn =1.6) is introduced 1 f =6000 A . Calculate thickness of

fringe is found to be displaced to the position of 20th dark fringe for light of
the film.

Solution. In a biprism experiment,
Given that: p=1.6, n=20, A=6000x10""m

We know that the thickness of the film is

- nA
(n-1)
-10 -6
_20x6000x107% _12x107° 0 16-6 1 _90 um.
(1.6-1) 0.6

Example 4.8 In an interference pattern, at a point we observe the 12th order maxima for wavelength
A, =6000 A. What order will be visible here if source is replaced by light of wavelength A, =48004 ?

Solution. In an interference pattern,
Given that: n, =12, A, =6000A, n,=?, A,=4800A
Suppose B, and B, are the widths for wavelengths A, and A, then

o S
Py = (2d) 0
_A,D ?
and BZ = ﬁ ...(ﬂ)
Dividing Eq. (i) by Eq. (i)
B, A - J
E = 1’—2 ....(Ili)

In field view, n, fringes are for wavelength A, and n, fringes are for wavelength A,.
Then width of field of view

By =nBy ..(iv)
or n, = néi (V)
2

Putting the value of gl— from Eq. (iii) in Eq. (v), we get
2
mh
nz e = . ..-(vi)
K2
Putting all given values in Eq. (vi)

_mh _12x6000
2 A, 4800

= n, =15.

n
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411 CHANGE OF PHASE BY REFLECTION AND
DIVISION OF AMPLITUDE : STOKE'S LAW

To investigate the phase change in the reflection of light at an interface between two media.
gir G.C. Stoke used the principle of optical reversibility, The principle states that a light ray, that is
reflected or refracted, will retrace its original path, if its direction is reversed, provided there is no absorption

of light.

Rhrer

e

I
I
I
I
|

(n) (b) (c)

Fig. 4,21 (a) Reflection and refraction of light wave from rarer to denser medium ; (b) Reflection and refraction
of light wave with amplitude of refracted wave of (a) and with incidence angle equal to angle of refraction of (a)
from denser to rarer medium ; (c) Reflection and refraction of light wave with amplitude of reflected wave of (a)
and with incidence angle equal to angle fo reflection of (a) from rarer to denser medium.

Consider a light wave PO with amplitude « falls on the interface of a denser medium from a
. tarer medium as shown in Fig, 4.21. Now we can define coefficient of reflection by ras

~ Amplitude of reflected wave

r= e
Amplitude of incident wave ~{(4.49)
and coefficient of refraction by ! as
Amplitude of refracted wave i
- i (4.46)

_ ~ Amplitude of incident wave
Pherefore, the amplitude of the reflected wave OQis ar and that of refracted wave OR is at.

E To d?‘;","’ ‘;f)ﬁsidc'r the situation when the directions of rcfll:*cted and. refracted waves are reversed.
~ lrom dcn’,,.lmt it is considered that a light wave of amplitude at is allowed to fall an interface
oy Lr.flo rarer medium along RO. Then one has a reflected ray alo'ng OS with amplitude
“lectio, a::dr "'C*Qf{ wave with amplitude att’ along OF, wher_c r and are the coefficient of
Moyeq cocff:cncnt of refraction from denser to rarcr medium respectively. Thereafter, it is
o fall the |j ght wave of amplitude of aron the interface from rarer to denser medium along

20, N :
tlon, (3"“;’, there i a reflected along OP with amplitude ar? and a refracted wave with amplitude art

SSF

N 1 .
&mplit::.”"l’zcrposilion of these two cases of propagation of light waves gives a light wave with
elar” 4 att')along OP and another on¢ with amplitude (art +atr’)along OS. The reversal of
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reflected (with amplitude #7) and refracted (with amplitude af) light wave must produce . light
wave with amplitude along OP, and no wave along OS because wh("n we hnve Coidénd
propagation of light wave from rarer to denser medium along PO, there is no wave along Os.

Therefore, ar’ +att' =a (4.47)
and art+art=0 .(4.48)
From Eq. (1.47), we have ' =1-r ~(449)
and from Eq. (4.48), we get Y =—r ...(4.50)
The negative sign in Eq. (4.50) indicates a STATEMENT
displacement in opposite direction that is Stoke’s law states that if waves are reflected at
equivalent to a phase change of n or a path a rarer to denser medium interface (for

example, air-glass interface), the reflected
waves have a phase difference n (or path
o ated with reflection occurring at the difference E) compared to the incident wave,
interface when light propagates from rarer to !
denser medium. This is known as Stoke’s law of

reflection waves.

difference % Therefore a phase change of = is

This also occurs in elastic waves such as sound

4.12 INTERFERENCE FROM PARALLEL THIN FILMS OR COLOUR OF THIN FILMS

Colour of thin films can be explained by interference, which is exposed to composite light. Young
explained the phenomenon on the basis of interference between light reflected from upper and
bottom surface of thin film. It has been observed that in this case of thin film takes place due to (a)

reflected light and (b) transmitted light.

4.12.1 Interference due to Reflected Light

Let us consider a transparent film GHH'G' G (Fig. 4.22) of thickness ¢ and refractive index . A
ray AB incidents on the upper surface of the film is partly reflected along BR and partly refracted
along BC. At C, part of it is internally reflected along CD and finally emerges out DR,, parallel to
BR. This will continue further in the same way.

Aim : To get path difference between two reflected rays.
Draw a normal DE on BR and other normal BF on CD.
One also produces DC in backward direction which meets at P on BQ line.

In Fig. 4.22,
Z ABN = Zi=angle of incidence and £QBC= Zr=angle of refraction.
From geometry of Fig. 4.22,
ZBDE=/i and ZQPC=/r
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Fig. 4.22 Interference in light reflected from a thin film is due to a combination of
rays BR and CR, from lower and upper surface of the film.

| The optical path difference between two reflected rays (BR and DR,) is given by
| A=Path (BC+CD) in film — Path BE in air
=u(BC+CD)-BE
sini _ BE/BD _ BE
sinr  FD/BD FD
or BE=p(FD)
From Egs. (4.51) and (4.52),
A=u(BC+CD-FD)
=p(BC+CF+ FD-FD)=pu(PC+CF)
=p (PF) [+ PC=B(]

We know that, p=

From A BPF = PF
2 cosr=—5

| or PF = BPcosr=2fC05r
Substituting Eq. (4.53) in Eq. (4.54)
A=px2tcosr=2ptcosr

su,ffers an abrupt phase change of &, whlch is equwalent toa path drﬂ'erence af—

A
Thus the effective path difference between the two reflected rays =2 p tcosr+ >

209

...(451)

..(4.52)

..(4.53)

..(4.54)

.(4.55)

It should be remembered that a ray reﬂected ata surface backed by a denser medmm

e

§ T

« It .
150n the basis of Stoke’s treatment.
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Condition for bright bands in thin film for reflected light.

The path difference A=n), n=0,1,2, 3, 4,... [Constructive interference)

then 2ptcosri%=nl

or zptms,=(2nﬂ)% .(4.56)  [Film will appear brigh
Condition for dark bands in thin film for reflected light.

If the path difference A=(2 nil)% ; =l 1208 [Destructive interference]

then 2ptcosri%=(2ni1)%

or 2utcosr=ni -.(4.57)  [Film will appear dark]
4.12.2 Interference due to Transmitted Light

Let us consider a transparent parallel film GHH'G' G (Fig. 4.23) of thickness t and refractive
index (u). A ray AB incidents on the upper surface. This ray AB refracted as BC. The ray BCis partly
internally reflected as CD and partly transmitted as CT. The ray CDalso partly internally reflected

as DE and finally emerges as transmitted ray ET,, which is parallel to CT. This will continue
further in the same way.

Aim : To get path difference between two transmitted rays.

We also produce ED in backward direction which meets produced CF at I.

Draw a normal EP on CT and other norm
direction, which meets at I on CF and angle
£ CBN' = Zr. From the geometry of Fig. 4.23,

al CQ on DE, one also produces ED in backwa}rd
of incidence £ ABN = /i and angle of refraction

ZECQ=4r, LPEC=/i and LCID=77
A N

| In =mmmmme e
| 5 ]
I I r\\
i 1 I A t
| 3 Rarer
G ' YD l (Air) .
¢ koo
Denser
(glass)
Gl’ = .
HF
T

Fig. 4.23 Interference in light transmitted from a thin film is due to combination of
rays CT and DT from the lower

and upper surfaces of the film.
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The effective path difference
A=p(CD+ DE)-Cp

ll=§i_g{_:CP/CE_(_‘p
sinr QE/CE~ QE
CR=pRh) .(4.59)
From Eqs. (4.58) and (4.59),

A=p(CD+ DQ+QE)-QE(n) =p (CD+ DQ)

...(4.58)
Also,

=u(ID+ DQ) [ CD=1ID]

=n(IQ)

=p (2t cosr) [From Fig. 4.23]
= A=2utcosr ...(4.60)

Hence it should be remembered that inside the film, reflection at different points takes

place at the surface backed by rarer medium (air), thus no abrupt change of n takes
place in this case.

Condition for bright bands in transmitted light (Constructive interference)
A=2ut c_os.r=n?u ..(4.61)  (Film will appear bright)
Condition for dark bands in transmitted light (Destructive interference)

A=2put cosr=(2n:i:1)% (4.62) (Film will appear dark)

These conditions (4.61) and (4.62) are just reverse by reflected light as given by Egs. (4.56) and (4.57).
Hence the interference patterns in reflected and transmitted lights are complimentary.

Example 4.9 A uniform water film has thickness 3.0x 10" ° cm. What colour does it show when seen in

reflected white light along the normal 7 (K 40 = 3 ).

Solution. The wavelengths for destructive interference in reflected light (condition for

minima) are given by
2ut=nk
= 2><-:—><3.0x10"5 em=nk (n=1,2,..)
2 =8x10"5 cm, 4x107° cm, 2.7x107° cm, ...
- -5 F

The possible A values in the visible range are 8x107° cm (red), 4x10 cm (violet). Hence
these parts of the spectral colours are absent in reflected light. Intermediate wavelengths
“Orrespond to yellow green, that colour will be seen.

F‘“‘mmc 4.10 A thin film of soap solution is illuminated by white light at an angle of {'ncidence
I=sin=11q, 5). In reflected light, two dark consecutive overlapping fringes are observed corresponding to the
Wavelength 6.1 x 10~7 m and 6.0 x 10~ m. Calculate the thickness of the film (0 =4/3).
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Solution. In colour of thin film (soap film)

-5
Given : i=sin"] (4/5) or sini=4/5 A = 61x10""cm,
=6.0x10"°cm, p=4/3=1.33

rr+1
The condition for dark bands in this film for reflected light
2utcosr=ni
Now according to queshons consecutive dark bands for wavelength A, and A, ; above
condition will be as :
2ptcosr=ni, wee{T)
and 2utcosr=(n+1)A,, .o(i0)
From Egs. (i) and (ii),
mh, =D,

or n(kn _ln+1)=ln+1
A ; <
= n=__n.;;1___ “.(ui)
(ln . n+1)
Putting this value of nin Eq. (i), we get
A
1"n
2uf COS = —nt
(7\.” _?"n+1)
A, A
= t= n+1 ; l"U)
(A, =A,+1)2u cosr) : (
But cosr=+/(1-sin?7) ; —S-IT-T—p or siny=Sni
sinr

H

cosr= ( L l] — (1 2 _sin? i) (V)

Putting the value of cosr from Eq. (v) in Eq. (1'v)

AN,

2x(A, ?LH)\HJ ~sin? f)

) 6.1x107° x6.0x 105
2x(6.1-6.0)x 1075 [(1.33)2 _(0.5)2

=1.715x10"° m.

t=
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3 Frample 4.11 A soap film, srm{wndcd in air has thickness 5% 10~ cm and viewed at an angle 35° to the
- pormal Find the wavelength of " ’:‘s"’f in visible spectrum, which will be absent for a reflected light. The p for
L e soap film as 1.33 and the visible spectrum is 4000 to 7800 A [GGSIPU, Dec. 2009 (4 marks)]

Solution. In colour thin film ;
Given that: 1=500nm =50x107" m, =35% =133

We know that :
2ul cosr=nh (D)
and H= &
sinr
sin35°
1.33

= sinr=

then

O i
cos 7= (1—sin2r)=!1-(s'1“§35” = J1=0186) =0.902

For first order i.c., n =1
Ay =2ptcos r=2x1.33x5.0% 1077 x0.902

~1.199x%107% m = 12000 A (approx.)

For second order i.e., n=2

2 =2E_f_c_.qs_f=pfcosr =

1.33x5.0x10"7 x0.902 = 6000 A (approx.)

For third order i.e., n=3
=7
outcosr _2x133x50x10 x0902 _ 4000 A (approx.)

= e =

3 3 3

For fourth order i.e., n=4

3
o _M=2x1.33x 5.0:10 x0.902 ~3000 A (approx.)
474

Hence 1, and 2, wavelengths of light in visible spectrum will be absent.

- 412.3 Colours in Reflected and Transmitted Light be Complementary
eflected light will be complementary of those

The colours observed in thin film in s of r : M
Observed in transmitted light. This is because the conditions for maxima and minima in the

reflected light is just the reverse of those in the transmitted light.

4.12.4 ; in Thin Films |
Production of Colours bubble, exposed to an extended source of “white”

When a thin film of oil on water, or a 502P i/ : :
¢ light (such as S‘;‘ )‘ i?c;)bs(:rved under reflected light, brlllla'nt colours arfeI sa:;r:i }Tot:le ﬂixlnsoorat:;
-~ Ubble, Thege CO}]’ourg arise due to the interference of the light waves reflec p

ttom surfaces of the film.
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The eye looking the film receives rays of light reflected from lfxoth the su rface.:s of the film, The
path difference between these interfering rays depends upon ¢ (thJFkness of 'the film) and Upon £;
and hence upon the inclination of the incident rays (the inclination is determlfled PY the PO'SltIOn of
the eye relative to the region of the film which is being looked). Now ‘.”hite light consists of ,
continuous range of wavelengths (colours). At a particular point of the film, and for a particular
position of the eye (i.c., for a particular ¢ and a particular £7) the rays of only certain wavelengths
will have a path difference satisfying the condition of maxima. Hence only those wavelengths
(colours) will be present with maximum intensity, other neighbouring wavelengths will be present
with less intensity, while some others which satisfy the condition of minima will be missing. Hence
the point of the film appears coloured.

The colouration will, clearly, vary with the thickness of the film as well as with the position of
the eye with respect to the point of the film (i.e., with the inclination of the rays). Therefore if the
same point of the film is observed with eye in different positions, or different points of the film are
observed with eye in the same position, a different set of colours will be observed.

If the film is of uniform thickness everywhere and the incident light is parallel, the path
difference at each point of the film will be same and the entire film will have uniform colouration.

4.12.5 Colour in Thick Films

When the thickness of the film is large compared to the wavelength of light, the path
difference at any point of the film will be large. Then the same point will have maximum intensity
for a large number of wavelengths, and minimum intensity for another large number of
wavelengths and the number of wavelengths sending maximum intensity at a point will be almost
equal to the number of wavelengths sending minimum intensity. These wavelengths sending
maximum and minimum intensity will be distributed equally over all the colours in white light.
Hence if a certain number of wavelengths, say in red colour, is sending maximum intensity at a
point, the same number of wavelengths in red is sending minimum intensity at the same point.

Consequently that point will receive average intensity due to red. The same holds for all colours.
Hence the resultant effect at any point will be the sum of a]] colours, i.e., white.

4.12.6 An “Extended” Source is Necessary to Observe Colours in Thin Films

An ‘extended’ source is necessary to enable the €ye to see a large area of the film simultaneously.
When a thin film is illuminated by a point source [Fig. 424(a)] then,

——-—..___... ;
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e

be received by eye. The ray only from a small portion of the film can enter the eye. Hence the entire
flm cannot be scen by the eye placed in a fixed position.

when the film is illuminated by an “extended” source [Fig. 4.24(b)], the rays from different

ints of the source are reflected from different parts of the film so as to enter the eye placed in a
foed position. Hence one can see the entire film simultaneously.

£12.7 How Thin Must be a Thin Film 2

We do not see interference colour, when thick layer of oil is illuminated in day light. In fact,
even when a thin film is illuminated by so-called monochromatic light, the interference pattern
disappears as the thickness of the film is increased beyond a certain limit.

The necessary condition for observing interference in thin films is that the path difference
between two interfering beams must be less than longitudinal coherence length . otherwise they
would be incoherent. Hence, for interference to be visible, we find that

12
2ut S —
hteosrs

_(%/an)

or t
2 cosr

«.(4.63)

Human eyes can distinguish between colours corresponding to difference AX =100 A. Hence
assuming .~ 5000 A, and taking cosr=1, we get

t<8um
For glass (u =1.5); the glass film therefore, must be of the order of a few um.

4128 Explanation of Colour Effect

When a thin film is exposed to white light, e.g., sunlight colours appear in the reflected light.
The cause of this could be understood from the following explanation :

Soap Bubble

Let the thickness f of indices the film of the soap bubble is constant. White light has different
Wavelengths and refractive indices. Due to the spherical nature of bubble the angle of refraction r
Yaries from point to point even for parallel incident beam. Hence varying values of p and r can

%lisfy the condition of constructive interference ie., 21 fcosr =(2"i1)’2’ for a particular wave-

length . i.e,, for particular colour. So that point will be maximum in that particular colour,
In the similar way the other points may satisfy the condition of constructive interference and
™3y appear bright in other colour.

Thin Layer of oif Fitm

A

P thin layer of oil film may be obtained by powering a little oil on water surface. When
aralle]

SUN rays are incident, the angle of refraction rwill remain constant. For different values of p
e to different waveleneth ;L the thickness of the film t may not be constant for fiiff?mnt points of
s :\e ilm. Thys the dif ferEnt p:::ints of the film satisfy, the condition of construction interference for
| Cifferen, colours depending on p! values. That is why the film appears multicoloured.

Ty o
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If a monochromatic light of wavelength A and refractive index p be incident on a film where
thickness ¢ is not constant. Depending on the values of A, and ¢, certain points of the film may
satisfy the condition of darkness and this points will appear dark. The other points may appear
bright. So the film will have alternate dark and bright bands.

: A
If t be larger for a film, then the condition of brightness, ie., 211“05?:(2"11)5 may be

satisfied for large number of wavelengths. The film under this condition will exhibit no colour
effect.

4.12.9 Classification of Fringes Exhibited by Thin Films

We have the path difference between two interfering rays of Iighf from a transparent film of
thickness ¢ and refractive index p is

A=2utcos ri%

So, the phase difference
g %jlx[zpt cos riﬂ . (4.64)

Clearly ¢ depends on (i) A, (ii) ut and (iii) r for a particular film.

(i) Fringes of Equal Inclination (FEI) [or Haidinger Fringes]

We have m:@#ﬁ:inm.u ..-(4.65)

for bright fringes.
If ut and A are constant the equation2pt cosr=(2n+ 1)-JE shows that a part-ic-ular order number

of bright fringe is governed by the particular angle r, i.e., the inclination of the rays with normal to the
film. Such fringes are called the fringes of equal inclination (FEI). : '

Circular fringes in Michelson interferometer are the examples of fringes of equal
inclination (FEI).

\(id) Fringes of Equal Thickness (FET)/Fizeau Fringes
If > and rare constant then from equation 2t cos r =(2ni-1)lL »we note that a particular order

of the bright fringe is dependent on particular thickness and value of ut, i.e., the thickness of film.
Such fringes are called the fringes of equal thickness (FET).

Circular fringes as Newton's rings are the example of this class of fringes.
(iii Fringes of Equal Chromatic Order (FECO)"
If ut and rare constant, then a particular order number nof a bright fringe is governed by A, i

particular colour. A particular colour fringe satisfies the condition for particular wavelength. These
fringes are called fringes of equal chromatic order (FECQ). Gndctat
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4,13 INTERFERENCE PRODUCED By WEDGE SHAPED FILMS
B R

Letus ofJnSid'JT OXand OY are two planes, which are inclined at angle o. A medium of refractive
g.':" indexpis enclosed between these two Planes. When a light ray incidents on the inclined plane, then
- jtisreflected from top and bottom surface of the film in the form of AR, and CR,. Let the angle

"'-'-.;_- ofindidence and refraction are Ziand /¢ respectively. If refractive index of medium is greater than

. rfractive index of medium of incident ray, then AR, suffers an extra path difference of% [Fig. 4.25].

: Since the time taken by first light ray to go
~ from AN is same as for the second ray to go from A
- to B Bto G thus a path difference (A) between
~ reflected rays AR; and CR, can be written as

A=(4B+BQ)_, - (ANi%)

air

A
=(AM+ MB+ BC -| ANt-=
( ! )med. ( 2Jair

(466)
=M(AM+MB+BC)—AN£; (467)

From Snell’s law, p =-an—!
sinr Fig. 4,25 Interference produced by
From &'s ANC and AMC wedge shaped film.
“zAN/AC = AN=pAM
AM/ AC

Putting the value of AN in Eq. (4.67), we get _
- A A

In&'s CPBand ppp,
£BCP=/BDP=(r+q)

ZCPB= /DPB=90°and BP is common.

Thus ACPBang ADPBare equilateral triangles.
BC=BD and CP= PD=t=thickness of the film.

Squation (468) becomes

!
A=y (MB+BD) %=u-MDi5 (4.69)

From ACMD, MD=2tcos(r+)

i |

1
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Then Eq. (4.69) becomes

A=2pt cos(r+a) :I:% ---(4.70)
For maxima, 1 1 .
(to get bright fringes) R P S
2ut c:os(r+a)il =nA Since locus of constant thickness
2 from point of contact is line, thus line
or 2utcos(r+a)=(2n+ 1)& ..(4.71) fringes are formed in wedges shaped
2 thin film. The fringes are localised
For minima, (To get dark fringes) fringes, because they are formed
2 A within the film due to diverging
2ut COS(r+(1)iE = (2r1:|:1)5 nature of reflected light.

or 2ut cos(r+a)=nk ...(4.72)

At the edge of wedge, the thickness of film is zero, hence it satisfies the minima condition for
n=0. Therefore at point of contact the fringe will be dark.

4.13.1 Spacing between Two Consecutive Dark Bands

Let x; be the distance of nth dark ring from the edge for thickness ¢, and x, be the distance of
(m+n) th dark ring from the edge for thickness t, as shown in Fig. 4.26.

Then from Eq. (4.72),
2ut cos(r+a) = nA
ni

b= d
1 S eRlrr o) w(4.73) [for nth dark band]
_ (m+n)A
and Ty «(474)  [for (m+ n)th dark band]
From Fig. 4.26, we have
_ t, =x, tana ...(4.75)
and t, =x, tana (4.76)
Then from Egs. (4.73) and (4.75)
ni
17 2 tana cos(r+ ) silet)
Similarly from Eqs. (4.74) and (4.76)
A (m+n)A s
27 2ptana cos(r+a) “(4.78)

From Egs. (4.77) and (4.78), we get
3 mA
2ptanacos(r+a)

Xq =%,

Fig. 4.26 Wedge shaped fil™
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4th of single band (Fringe width)

The Wi
b= (x5 —x7) N
N = .(4.79
w 2p tan o cos(r+a) (7
If o is very small, then G
=g, LA T A wedge-shaped air film (u =1) may
A be obtained by inserting a thin piece
B= 20 COS T --(4.80) of paper or hair the ;:Iane parallel
g glass plates. Then a=—, where t is
For normal incidence r= 0, therefore, X
A the thickness of air and x its distance
; =— ..-(4.81) from the edge, where the two plates
| 2pa. touch each other.

....................................................

4132 If White Light is Substituted for a Sedium Light

When the film is seen in white light, each colour (wavelength) produces its own interference
fringes. The separation between two consecutive fringes will be least for violet, and greatest for

red. At the edge of the film t=0 and hence m=(%). Hence each wavelength gives minimum

intensity at the edge. The edge will therefore be dark. As we move away from the edge in the
direction of thickness increasing, we obtain a few coloured bands of mixed colour. For still greater
thickness, the overlapping increases so much that uniform illumination is produced.

413.3 Testing of Optical Flatness of Surfaces

The important application of the phenomenon of interference produced by a wedge-shaped
film is to measure the flatness of a glass plate.

If two surfaces OA and OBare perfectly plane the air film between them gradually varies in
thickness from Oto A as shown in Fig. 4.27. The fringes are of equal thickness as each fringe is the
locus of the points at which the thickness of the film has a constant value.

1 Ifthe fringes are not of equal thickness,
Means that the surface is not flat (plane).

the STO tf&St the optical flatness of a surface,
placegeumen surface to be tested (OB) is
The fﬂ‘:’er an optically plane surface (OA)-
i, 3 ges are observed in the field of
surfa‘t'e O;;h.ey are of equal thickness the
"0t pla is plane. If not then surface OBis
€ o €. T%le surface OB is polished and
SEweZESS is repeated. When the fringes
tface Oal:e of equal width, it means the
Bis plane. . Fig. 4.27 Testing of flatness of a glass plate.

A
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T 5.82% 10" " m falls normally on a glase gy

™ pr fic hq&'” nfﬂ"ﬂl’l"r”g”l < b L HASS Ted "
Example g.12 A beam of monochromalic ight 0 e g

;,..?;: ”:: _J'M“ ancle of 20 seconds of an arc. If the refractive index of glass is 1.5, find the numpber of dari

erference fringe wedge length.
s G [GGSIPU, Sept. 2013 reappear (4 marks) ; Sept. 2012 (4 Marky)|

Solution. Given .=582x10"m, a=20", p=1.5

; 8
The fringe width ﬁ—m
a:,__zoi__ radian
60x60x180
5.82x1077 x60x60x180 _ 5.82x6x6x18x107>
p= 2x1.5x20x 2x1.5x2xm

=2.0x10"° m =0.2 cm.
Number of dark interference fringes (m) per cm of the wedge length i.e.,

L . =1(—)percm=5fringespercm.
X,=x; B 02am 2

Example 4.13 A glass wedge of angle 0.01 radian is illuminated by monochromatic light of wavelength
6000 A falling normally on it. At what distances from the edge of the wedge will the 10th fringe be observed

by reflected light ? [GGSIPU, Nov. 2006, Sept. 2005 (4 marks)]
Solution. Given that o =0.01 radian, n=10

»=6000 A =6000x10"1° m
The condition for dark fringe 2t = nj.

The angle of wedge a=L or t=ox
x

2xa =ni
_ - _10x6000x10~10 3
2a 2x001.., O -

4.14 NEWTON’S RINGS
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\ ; maoc 1
Light from an extended monochromatic source such o sodium lamp falls on glass plate (using a

onve 10 Iy (collimator lens) to do parallel, the rays coming from S). Gis held at 45° with the
e e I‘L‘flc)c ts normally, a part of incident light towards the air film enclosed by
the lens Land the glass plate P,

A part of the incident light is reflected by a curved surface of the lens L and a part is
tm"s“ﬁ“ed Hie is- refl.u cted back from the plane surface of the plate. These two reflected
qys interfere and give rise to an interference pattern in the form of circular rings. These rings are
localised in the air film and can be scen with a low power microscope T focussed on the film
(Fig. 4.28].

NOTE
' Viewing
Newton's rings are foci of iroscope
constant thickness of the alr
film these focl are concentric
cdrcles hence fringes are
circular,
............................................. L |
Lighl / - B?ﬂm
source . . splitter
Collimating
lens Y Y
A A A
..—-'Q Le
L / ns

Poe—] C ] Optical flat

Fig. 4.28 Newton's rings apparatus. Interference fringes of equal thickness are
produced by the air wedge between lens and optical flat.

4142 Explanation of the Formation of Newton's Ring

'twr:eewmn’s. rings are formed due to interference

ltomn the light beams reflected from the top and

e forsurf?ces of air film formed between the plfltes.

With the"}l]atlon of Newton’s rings can be exp-lal-ned

Which ¢ ]10 Ip of Fig. 4.29. AB is a monochromatic light < /
(g “Ss'ai?-'s on the system. A part is reflected at C L\_ — .

W Interface) which goes out in the formof ray 1 p [ j_f&’p : -

0
rt ‘“.‘Y reversal, The other part is refracted along
Point D), it jg again reflected and goes out in the Fig. 4.29 Formation of Newton's ring.

1

E

P 0 A T L

A

S
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form of ray 2 with a phase reversal of n. The reflected rays 1 and 2 are in a position to prm.:lum
interference fringes as they have been derived from the same ray AB and hence fulfill the condition
of interference. As the rings are observed in the reflected light, the path difference between them i

Actual path difference =2pf cos(r+ a)i:vz— ;

a is the angle of wedge, due to large radius of curvature of planoconvex lens, a is extremely small
and can be neglected.

So, path difference =2put cos r:’c%

For air film, p=1

and for normal incidence Zr=0

Hence in this case, the path difference =2ti% ‘

At point of contact { =0.
A

. Path difference =—
2 [which is condition of minimum intensity]

Thus central spot is dark.
For rnth maximum, we have

Zti% = (482)

This expression shows that a maximum of a particular order n will occur for a constant value
of t. In case of this system, f remains constant along a circle. Thus the maximum is in the form of
circle. For different value of t, different maxima will occur. In a similar way, this can be shown that
minima are also in the circular form.

4.14.3 Production of Coherent Sources in Newton'’s Ring Experiment

In this experiment, a ray is partially reflected back from the lower surface of the
planoconvex lens and partially refracted. This refracted ray is then partially reflected back from
upper surface of the plane glass plate placed below the plano-convex lens. These two rays are
derived from the same ray incident on the plane surface of the plano-convex lens and have a
constant phase difference depending on the thickness of the air film at the point of reflection. In
this way, one gets these two rays by means of division of amplitude. Therefore, these two rays are
coherent in nature.

4.14.4 Theory of Newton's Rings

1. Newton’s Rings by Reflected Light

Now we shall calculate the diameters of dark and bright rings. Let LOL' be lens placed on 2
glass plate ABas shown in Fig. 4.30. The curved surface LOI' is the part of spherical surface with

thickness t. As discussed above.
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Zfi-;::nl

'}
2t=(2n+ 1)5 .{483)  [For bright ring]

“fheff"=1' 2,3, .- et

i 2t =nb. .(484)  [For dark ring]
= 3,4, ... etc.
where ﬂ-o; 1!’ 21 !

From the property of the circle, (Fig. 4.30)
NPx NQ= NOx ND

ubstituting the values, P
rxr=t(2R-t) - : it
=2Rt—t? =2Rt (approximately) Py : \“
r* =2Rt l
. '
= 2R
2
or 2= ..(4.85)
Thus for bright ring,
7 (nilr
- Fig. 4.30 Essential geometry for calculating
2 diameter of Newton’s rings.
or 2 _@nil)AR ..(4.86)
2
Replacing 7 by ED ; we get the diameter of nth bright ring is
D? _(2n1)AR
4 2
e D=.[ZAR) {@nx1) -(4.87)
* D J2n%1)

Thus the dj eters of the bright rings are proportional to the square root of odd natural

.~ Mimbers, as (2n+1)is an odd number.

Similarly, for a dark ring, 1;— =nh
f2 —nAR or D2 =4nAR
D=2+mR

DocJn .(4.88)
s diameters of dark rings are proportional to the square roots of natural numbers.
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It can be shown that fringe width decreases with the order of the fringe and fringes get closer

with increase in their order.
The diameters of 16th and 9th dark rings are :

D, =2 /16 AR =8+/AR
Dy =2\9AR =6 AR
Dys—Dy =8VAR - 6+AR

=2JAR
Similarly,
D,-D, =4JAR -2JAR
=2JAR

This is shown in Fig. 4.31.

In this case of reflected light the central ring will be dark.

2. Newton’s Rings by Transmitted Light [Fig. 4.32]
In case of transmitted light

2t=n\
%
and 2t=(2nil)—2—
For bright rings,
r2 2
2x—=mn\ or r°*=mn\R
2R
or D=2 _./nAR
or Doc/n ..(4.91)

For dark rings,

2

r A

L ) L
o Rl

rz _ (znil)lR

Fig. 4.31 Newton’s rings
[reflected case].

-.(4.89)  [For bright rings]
...(4.90) . [For dark rings]

il P Fig. 4.32 Newton’s rings
[transmitted case].
D=2 AR x (2nt1)
Dec/2n+1) (4.92)
Thus in case of transmitted light, the central ring i< p.s ; Y . ;
in reflected light. ' ¥ing s bright. The rings are just opposite fo the TinS®
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(145 Determination of Wavelength of Sodisrs Light using Mewtar!s T

aperimenfﬂﬂ arrangement is shown in Fig. 492
Theory. Let R be the radius of curvature of 2 SUTERCE T Combae? Wi T S L9 am e

wavelength of the light used and D and D, ., the disrcters of w7 md (mownfie datc “rigs

rﬁPedively’ thest

5 ) 2
D; =4n.R and Dl . =4(msmyii

b 4
2 2 e
o D, .,.-D;=4mRj.
2 -
4 Dm~r. i D_: ;

Using Eq. (4.93) ; % can be determined.

Procedure. First of all the eyepiece of the microscope is aéuared on 3 crnaswivss. Mo %
distance of the microscope from the film is adjusted 2t fhe rings with daric certre i wal forns The
centre of cross-wires is adjusted at the centre of fringe pzttemn. By conrfing Fe rumber of g,
the microscope is moved to the extreme left of the pzitern znid Fe cosswive o zdipenst
tangentially in the middle of nth (say 20th) bright or dari fringes. Tre rezding of micrometin wrwn
(attached with eyepiece) is noted. The microscope is nowr moved o e right and e readings of
micrometer screw are noted successively at (n-2)th (szy 1250, (z~%; 2 (327 165 .. rimgs 22 G110
weare very near to the central dark spot. Again crossing the central daric spof i e szme direcSor die
reading corresponding to ... (n—4)th (16th), (n =2 )th (1&th) ...zt (205 rings arz rone or ofer sice.

Now a graph is plotted between a number of rings
() and square of the corresponding diameter. The graph S
Is shown in Fig. 4.33. /
2 o2 A
From the graph, Eﬂi& :é;g g P //
‘The radius (R) of the planoconvex lens can be b ,{--,,:_,/
“hined with the help of spherometer using following =~
f(]l‘n'“_lla‘r ‘;‘,‘: + I / :
2 H / e
r=L ,h (494) e |
6h 2 L/ c _'b
Sph N of mngs ()

Sp :’OmEter and h is the difference of the reading of
e;m:leter. [When it is placed on the lens as well 28 Fig. .32 NumEer of rings 2. sqnave of the
Placed on the plane surface] diamessr of ¥ewton's rgs.

4. - -
146 Determination of Refractive Index of @ Liquid
is an air film befween the glzss plate ard

Firgt
of all experiment is performed when there . ) .
P et saner. The dizmeters of £t arid (re~25t

Noco .
nvex lens, The system is placed in 2 metal con
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rings are determined with the help of traveling microscope as discussed in previous section 4.14 5
at page 225. So, when there is air film between glass plate and planoconvex lens, we have

D?=4nm\R and D}, =4(m+mAiR

D2 = Di =4 mAR -+(4.95)

m+n

Now the liquid [whose refractive index (u) is to be determined] is pqured in the container
without disturbing the whole arrangement. Again the diameters of nth ring and (m+n) th ring
are determined. So when there is a liquid film between glass plate and plano-convex lens,
we have

_4nAR
ol

aiidl D2 _4(m+n)AR

m+n =
u

D2

n

4 mAR
P2 12
Dipan =D == ..(4.96)

D2  -D?
From Egs. (4.95) and (4.96) p= _DEJT;Z ..(4.97)
n

m+m

Using Eq. (4.97), the refractive index (1) can be computed.

4.14.7 (a) Newton’s Rings by Contact of Concave and Convex Surfaces
Let R, and R, be the radii of curvature of the convex and concave surfaces. It is essential that
R, > R,.InFig. 4.34, a convex surface of radius of curvature R, isin contact with a concave surface
R, at point O. Let us consider a Newton'’s ring of radius r.,» Where the thickness of the air film is .
From Fig. 4.34, it is evident that

2l 42
t = P — R = n___n l 4'
Q-QR=|-o- R, 2K, (4.98) .
. film
For the thin film and normal incidence, the path
difference is given by
2 2
A=2pt=2p Tn_ Tw ..(4.99) Fig. 4.34 Newton's rings by
2R, 2R, ' contact of concave and
p convex surfaces.
For maxima or bright rings
A
A=(2n+1)—
@n+1);
2] 1 1 :I A R,-R
= pury|—-—|=2n+1)= = i b e Ml B R
" [Rl R, 2 s 2R, R, =2n+1)A

where D =2r =diameter of nth ring



e 4

1y ___H','url;'zf!,ﬂ[
oy, 1)

por alr e = Fand hence e, (4,100) bocoros

H-“A- lf"})

Df = LA(4.101)
For minima or dark fringet
A=17
I ;
o =7
2 ‘ R, R,
g| Ry =R
i (TR bl e Sy AT ¥
A1 R,
g Al I _
! e L2 (4102
= D=, ~ 1)) (#:lie)
7 I
For alr po=1, Ty, (4.102) in as
2w AnA R By L (4.103)

"'(Mgunn

4.14.7 (b) Newton’s Rings by Contact of Two Convex Surfaces

Let the radif of curvature of two convex siurfaces in contact (Fig, 4.35) be Ry and R, then
thickness of air film for convex-concave surfaces as shown in g, 4.35 is given by

."?' fz :
Loty gy ol 2;:, . (4.104)
]

; Proceeding, exac tly as for the previous case, one obtaing the expression for diameter of nth
- bright ring,
22ni 2R R,

" .(4.105)
nT (R Ry)

Vor ale, put =1 in tey, (4.105),
y  2(2n4 'U'/,fc K,
D, = -
(Ry+R1y)
The dameter of 1h dark ring is given by

e kR, .(4.107)
For . ;
T air, )1 =1, the Vay, (4,107) becomes Flg. 4.35 HNewton's rings by

D2 . ann I, K, (4,100) contact of two convez surfaces,
"T (R, + R )

(4.106)
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Wavelength relation can be expressed as
D22 4mAR,R,
m+n n i (R1 + R] )

Here (R, -R,) is the radius of curvature for concave-convex surface and (R, +R,) for
convex-convex surface. Similarly, one can obtain expressions for transmitted patterns.

..(4.109)

Example 4.14 In a Newton’s ring experiment the diameters of 4th and 12th dark rings are 0.4 cm and
0.8 cm respectively. Deduce the diameter of 20th dark ring. ~ [GGSIPU, Dec. 2011 ; Dec. 2012 (2.5 marks)]

Solution. In Newton’s ring experiment,
Given that: n=4; (m+n)=12, m=8
D,=04cm and D,,, =08 cm

The wavelength of sodium light using Newton's ring is

2 2
- Dm+n ~-D,
4mR
D ~D:
or 4 R="1uir__n
m
2 0 ay2
=5 4)\R = 08)"-(04)" )
m
We know that the diameter of nth dark ring in presence of air is
D? =4n\R
= D, =20x (4XR) (i)

Putting the value of 4\R from Eq. (i) in Eq. (i)

20x[(0.8)% — (0.4)2] 20
D = 2 ( )]=§x1.2x0.4 = Dy =12em

Example 4.15 In a Newton’s ring set up, diameter of 20th dark ring is found to be 7.25 mm. The space
between spherical surface and the flat slab is then filled with water (u = 1.33). Calculate the diameter of the
16th dark ring in new set up.

Solution. In Newton’s ring experiment,

Ist set up :

Given that: D,, =7.25 mm

We know that the diameter of nth dark ring in presence of air is

(D, )* =4nAR
is. D2 =4x20x AR
2
op="2) (1)

or
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y !
?'Trn'; sl ”I '

Now fjquid 18 introduced, then diameter of i th ring, is

{“:, )», AnLR
i
, g Ar167 )R
(Dy)" = 7 [as p =1.33]
167 (4).R) g
1 w3t}
putting the value of 4.8 from Eq. (i) in Eq. (i), we get
g 167(7.25)
0 Lk, o 8
D)= 00133
) 42725
o e vemintiiatarend p—e U =2,
o 16 1/20,]:;3 = 16 5 62 mm

prample.an6 If the diameter of nth dark ring in an arrangement giving Newton’s rings changes from 3
wm 10 2.5 mm a6 a liquid is introduced between the lenses and plate, what is the value of refractive index of

the liguid 7
Solution, In Newton's ring arrangement,
Given that : D, =3 mm =310 m, D) =25 mm =25%x10"2 m, p=?

We know that the diameter of nth'ring in presence of liquid is

4n).R
(D) = ": ()
and the diameter of nth ring in air is
(D, ) =4m.R i) [ p=1for air]

Dividing Eq. (if) by Eq. (i), we get
2 2
(D,)" _(30)" =(1.2)% =1.44.

P AT

(D)} (25)°

n

4148 The Porfect Blackness of the Central Spot in Newton’s Rings System

Neviton's rin i
g in reflected light are
. ; \/ 1) 2) /( (4) /(5)

frmed 1,
: Interference botwee ) T2
et y erence between the ray (1)
Flg. 4.36 TNlustration for perfect blackness of the
central spot in Newton's rings system.

( 3)

the s, m‘”f"fﬂy from the upper Hurfacc' of
e n}fta;n and the ray (2), (3), ... etc. which
ihtl’fnﬂl .ﬂf};:d ‘a“l,'r one, three, five (.'f'C.
4., i‘l":m"’””' These rays are shown in
P P:Q-,-;; ;.'ar about the point of contact the
M ‘u” the air film fs almost zero and
Mt ' path difference s introduced

N the im(.vrfering rays. But ray (2)
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reflected from the lower surface of the film suffers a phase change of =, while the ray (1) reflected
from the upper does not suffer such change. Thus the two interfering waves at the cefﬂre are
opposite in phase and destroy each other. The destruction is however, not complete, since the
amplitude of (2) is less than that of ray (1). But sum of the amplitudes of (2), (3), (4), ... etc., which
are all in phase® is exactly equal to amplitude of (1) as shown by the Stoke’s treatment. Hence
complete destructive interference is produced and the centre of the ring system is ‘perfectly’ dark,

Bright Centre

If Newton'’s rings are obtained by using a crown glass lens placed on a flint glass plate with a
small quantity of oil of sassafras between them, the centre of the ring system is ‘bright’. This is
because the oil of sassafras is optically denser than the crown glass, but rarer than the flint glass.
Therefore the reflections at both the upper and lower surfaces of the film take place under similar
conditions i.c., in going from a rarer to a denser medium. Thus there is a phase change of nat both
reflections. Hence relative phase difference between the interfering rays at the point of contact is zero
and the central spot appears bright.

4.14.9 Newton's Rings are Circular but Air-wedge Fringe are Straight

In both the Newton'’s rings arrangement and the air wedge fringes arrangement, each fringe is
the locus of points of equal thickness of the film. In Newton's ring arrangement, the point of equal
thickness of film lie on circles with the point of contact of the lens and plate as centre. Hence the
fringes are concentric circles. In case of wedge-shaped air-film the loci of equal thickness are
straight lines parallel to the edge of wedge. Hence the fringes are straight and parallel.

4.14.10 Expected Changes in Newton’s Ring

(a) If lens placed on silver glass plate in Newton's rings arrangement

If, in Newton’s rings arrangement, the top surface of the glass plate on which the lens is kept
highly silvered, the rings would disappear. This is because the transmitted rays will then be
reflected at silvered surface and the two complementary systems of rings would superimpose on
each other, resulting in uniform illumination.

(b) If white light is used

With white light only a few coloured rings are visible, fading into general illumination. This is
because the white light is composed of a number of colours (wavelengths). Each produces its own

ring system having a different spacing. Therefore at a point near the point of contact, the condition
for a bright ring will be satisfied by some colours, while that for a dark

the ring passing through that point will be coloured. But as we move aw
the thickness of the film increases and therefore the number of colours
of rings of each colour increases. This results in a greater overla pping and h

ring by some others. Hence
ay from the point of contact,
at a point and the closeness
ence in general illumination.
(c) If the lens is lifted slowly off the plate. (Effect of increasing the distance betwee
As the distance between the lens and the plate is increased, the
increases. The rings, therefore, come closer and close

n lens and plate).

order of the ring at a given point
runtil they can no longer separately observed.

4. Therays (2), (3), (4) etc. suffer one, three, five etc. internal refl

: \ ections and hence a change of r, 3r, 5retc. in phasé:
Thus any two consecutive rays have a phase difference

of 2r, they are all in the same phase.
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4 NEED OF NARROW SOURCE FOR BIPRISM BUT
A E\LEﬂNBEES#QURCE FOR NEWTON'S RINGS

——

1 case Of the l\1|1|-|st}l experiment, the wavefront emerging from t
B aath by the biprism. After refraction a part of the wwcfr(;nlb e
R $ .7 & ’ appears to dive
~her part from S,. 1 he two coherent sources S, and §. | PP = iverge from S, and the
O e fringes can be obtained 1 and 5, have a definite relative position and the
- rferen®® ges ained anywhere in the region which permits both th
A ~ » - nliep .y IS (0]
cources 10 pe seen. These non-localised fringes have a good contrast orovi deF:i thase lEt e coherent
T | ) ~ urce slits is :
glitis equiy alent to a number of adjacent narrow slits, each producing its own set f‘;‘f{frow
) n set of fringes.

2 :A“"ide ) i
uld be relatively displaced and result in a poor contrast due to overlapping

ﬂ'lCSe cots wo
Newton's rings are formed due to interference taking place between the waves reflected fr

the top and bottom surfaces of an airfilm. In this case the width of the incident wajerferoz(t:te ins

intact but the amplitude is divided and fringes are localised in a particular plane whose og?;:):?j

- determiHEd by the amplitude dividing film. With a point source, entire film cannot be ssen by the

eye p]aced in a fixed position because of the limited size of the pupil of the eye. When an exter):ded

flight is used, different points of the source, so that the entire film can be seen. Thus, there

~ source 0
d source to see localised fringes.

i aneed of an extende

416 APPLICATIONS OF INTERFERENCE OF LIGHT WAVES

ht waves is quite important and widely used in different
plications

~ The phenomenon of interference of lig
applications where precision measurements results are required. Some of important ap
of interference are given below :

1. The wavelength of light can
accurately, and even small wave
precisely determined.

andardization of standard meter. The

2. Interference phenomenon is used to do st
standard meter is a length which contains exactly 1650763.73 wavelength of orange

red light emitted by krypton-86.

3. Interference phenomenon is use
angular separation two stars and
regarding the position of astronomic object etc.

11 displacements, which are

4. Interference of light waves is also used to determine sma _
ongation of metal red.

causes due to thermal expansion Of compression of crystalor’€ B
5. Interference phenomenon is used for tesﬁng qua!ﬁy_of surface hn{sh ¢ apoe
components like lens mirror etc., during their fabrication to employ 1n microscope

and telescope etc.
6. Interference phenomeno
dielectric or metallic thin
7. Interference phenomena
instrument’s component
8. Interference phenomenon is used in in
beam of light.

be determined upto about eight significant figure
length difference of bi-chromatic light can be

ations like determination of

d in astronomic observ
complete information

planets, to determine

n is used to Jetermine the thickness, refractive index of
film used in optical components.
is used In producing antireflection coatings of optical

such as cameras and telescopes etc.
terference filter to obtained monochromatic
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4.17 THE MICHELSON INTERFEROMETER

The Michelson interferometer, first introduced by Albert Abraham Michelson in 1881, has
played a vital role in the development of Optics and Modern Physics. This simple and versatile
instrument was used, for example, to establish experimental evidence for the validity of the
special theory of relativity, to detect and measure hyperfine structure in line spectra, to measure
the tidal effect of the moon on the earth, and to provide a substitute standard for the metre in terms
of wavelengths of light. Michelson himself pioneered much of this work.

The amplitude of light beam is divided into two parts of nearly equal intensity by partial
reflection and refraction. They are sent in two directions at right angles and meet together by
after reflection by plane mirror to produce interference.

Construction

The Michelson interferometer consists of two highly polished front silvered plane mirrors M,
and M,. The mirror M, is mounted on a carriage and can be moved parallel to itself with the help
of a micrometer screw. The planes of the mirrors can be slightly adjusted with the fine screw
attached at their backs as shown in Fig. 4.37. The mirror M, is fixed.

Movable mirror

Beam M,

splitterh

»

Light L

I
I
I
I
I
source 4
1
1
S > ! : Fixed
0, S sme s mirror
I
I

Observer

Fig. 4.37 The experimental arrangement for Michelson Interferometer.

There are two parallel plates G; and G, of same thickness. The glass plate G, is semisilvered
on the backside and functions as a beam splitter i.e., a beam incident on G, is partially reflected and
partially transmitted. This glass plate is inclined at an angle of 45° to the incident beam. The glass
plate G, is called the compensating plate.

A telescope is positioned normal to M, to receive the reflected rays from mirrors M, and My
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working
ight from anexte

AW 1{¢h is inclined at
t"'t\m and partially t

nded monochromatic source §, rendered nearly parallel by a lens L, falls on

angle of 45° to the incident beam. A ray of light incident on G, is partially
ransmitted as rays AC and AB respectively. The reflected ray moves
and falls normally on it. It is reflected back along the same path and emerge out along
ted ray ABfalls normally on the mirror M, Itis reflected along the same path.
'aﬁ*er eflection at the back surface of. G].. it travels along AT. Since the two rays entering the
lscope are derived from the same incident ray, they are coherent and hence in position to
terfere. These two beams produce interference under suitable conditions.

ol
ards My 2°€
The transmtt

function of Compensating Glass Plate G,
0, the ray AC travels through the glass plate G,

After partial reflection and transmission at
ence of G,, the paths of rays AC and ABin

wice, while ray AB does not so even once. Thus in abs
1ass are not equal. To equalise these paths a glass plate G,, which has the same thickness as G;, is
placed parallel to G,. Gy is called the ‘compensating plate’.

417.1 Types of Fringes

The simplest way of explaining
of M, in plate G, . In case when M, and M, are at right an
or My ; the mirror M, and the image M, of M, in plate G,
planes of M, and M, as two surfaces of a thin film givin
differences and hence the interference pattern depends upon:

(i) The separation between M, and M,.

(ii) The angle 0 subtended on the eye.
(ii) The inclination between the two surfaces of wedge shaped film.

the effects of interference in this case is to consider the image
gles and G, is inclined at 45°to either M,
are parallel to each other. Now treat the
g reflected beams to interfere. The path

() Circular Fringes. Circular fringes
eproduced when M, andM, areparallel. ~~  ooooomnonnn-
Ifdistances of mirrors M, and M, from the P!‘"‘el oy |
PlteG, differ by distance 1, then separation Moo
between M, and image M, will be 2t as ,
:]hoo:“ 1“ Fig. 438. The path difference ]

Bacircle with centre Cas the foot of the
gem‘?;:fdlcular from the eye is constant. The
e Bemnce of this circle subtends an
ey On *he.eye. Therefore, the path
ind B'O?S folr different values of 6, shown

e n Fig. 1.24 will be different ; but

e 0:111& value of 0. Hence a ring which
'lnl*-‘rfe,m e condition for constructive
St M‘l‘e appears bright and one which
fey s & condition for destructive inter-

Ppear black with monochromatic

Fig. 4.38 Formation of circular fringes in
Michelson's interferometer

‘ .

1
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light and a pattern bright and dark rings resembling Newton'’s rings is s_ccn. However, the.sc rings
differ from Newton's rings in origin and are called Haidinger type of fringes. Tbese 'are.frlnges of
equal inclination while Newton’s rings are fringes of equal optical thickness (Fizeau’s fringes). The
optical path difference for bright and dark rings are given by

2tcos0=nh [for bright rings]
2tcosO=(2nt l)% [for dark rings]

Let the radius of the nth ring be x, and the distance of the foot of the perpendicular from eye
be L, then for small value of 6, it may be shown that

tan@=2" -9
.

The optical path difference for bright rings can be written as

92 %2
2fc099=2t[1——2—]=2t 1-—2 [=nA\

b3

Obviously, the order of fringes decreases as 8 increases i.e., as we move away from the centre.
The fringes are formed at infinitely because the interfering rays are parallel.

For successive rings, we may write

2 2 AL

a1~ = (4.110)

(b) Straight Bands and Curved Fringes. When mirror M, is not perpendicular to M, ie., the
mirror M; and the virtual mirror M, (image of M,) are inclined, the air film between M, and M, is
wedge shaped. The shape of fringes for various values of path difference are shown in Fig.4.39.In
general the fringes are curved and always convex towards the thin edge of the wedge as shown in
Fig. 4.39(a) and (c). The fringes are straight when M, actually intersects M, in the middle. Hence,
the essential condition for formation of straight bands is that the distance of M, and M, from plate
G, are optically equal.

X

These fringes are formed near the film and are observed for small path differences only.

- 1
-‘-G Mz

M,

(b)
Fig. 4.39 Straight and curved bands in Michelson’s interferometer.
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() White Light Straight Fringes. As shown in Fig. 4.39(b), the optical path difference for the
planc of in!rm\f‘!im.\ of M, and M:{ is the same for all colours. Therefore, if monachromatic light is
replaced by white l1ghl.. a few straight colour fringes with central white or dark appear in the fleld
of view. The central white or dark depends upon whether the plate G, is unpolished or polished at
the back. If the thickness of the film is large, a uniform illumination is obtained.

uses of White Light Straight Fringes

The white light straight fringes are used to find the thickness of transparent films and the
procedure adopted is as given below :

> Obtain straight fringes with monochromatic light. Replace monochromatic light by
white light.
> Note the position of the central achromatic fringes which is perfectly straight , with the
help of micrometer screw.
> Insert the thin film in the path of beam towards the mirror M,. The centre fringe shifts.
> Move the micrometer and note the shift of the central fringe by setting the cross wires on it.
If tis the thickness of the film and x the displacement of mirror M to bring the fringe back to
their initial position, then
2x=2(n-1)t
If correspond to a shift of n bands of monochromatic light, then
x=nh=(u-1)t ~(4.111)

This relation may be used to find
(1) the thickness of the film or sheet
(17) the refractive index of the sheet material, if the thickness is known.

4.17.2 Applications of Michelson Interferometer

(a) Determination of Unknown Wavelength of a Monochromatic Source. Using the given
n'f'imochrmnatic source, the mirrors M, and M, are adjusted to get circular fringes in the field of
View of microscope. The vertical crosswire of telescope is made to coincide with a bright fringe
and the position of mirror M, is noted on the scale as x,.

Now the mirror M, is moved with the help of the handle of the micrometer screw to a new
Position X, and the number of bright fringes, say n, passing through the vertical crosswire is

j:unted_ Now the path difference introduced between the rays due to displacement of (x, -x, ) of

152(x, -x,) (4.112)
The path difference between the rays in terms of wavelength =n} --(4.113)
From Eqs. (4.112) and (4.113), we have

2(x, —x;)=nk
or ; =2(Iz "Il) (4.1 14)

n
Equation (4.114) is used to determine the wavelength of monochromatic light.

b
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(b) Determination of Thickness of a Transparent Medium. Initially set the Michelson
interferometer to obtain circular fringes in the field of view of microscope. Coincide the vertical
cross-wire of the eyepiece with any one of the bri ght fringes. Note the position of mirror M, as Xy
Now introduce the given transparent object of thickness t of refractive index p on the pathof ray AB
in Fig. 4.37. It is seen that the bright fringe gets shifted. Now move the mirror M, such that the

same bright fringe is made to coincide with the vertical cross-wire. Note the position of mirror M2
as x,.
2

The path difference introduced between the rays due to displacement (x, —x, ) of M,
=2(x, -x,) ..(4.115)

Also the path difference introduced between the rays due to introduction of transparent
material

=2t(u-1) ..(4.116)
From Egs. (4.115) and (4.116), we get
2(x, —x;)=2t(n-1) ..(4.117)
(x, =X )
or == (4.
=) ..(4.118)

We also know that2(x, —x,)=n) then

2t(u-1)=ni (4.119)
_nA
or Ty +1 .(4.120)

(c) Wavelength Separation between Closely Spaced Spectral Lines. Michelson inter-
ferometer is extremely sensitive and versatile instrument. Its least count is as low as few micron

and hence it can be used to measure the wavelength separation between closed spectral lines for
example D, and D, lines of sodium,

Let two closely spaced spectral lines have wavelengths A, and A, and Ay >A,. When
interferometer is adjusted for circular fringes both wavelengths A, and A, produce their own rings.
The mirror is moved so that best contrast circular fringes are obtained. This shall happen when
path difference is such that maximum due to A, coincides with maximum due to A,. Under this
condition, say n; order of A, coincides with n, order of 1,

Le, A=nd) =nyA, ..(4.121)

As the mirror separation is increased gradually the contrast decreases it becomes worst and
then again increases and becomes best again.

Suppose the mirror M, is displaced by x while moving from one best contrast to next best
contrast. The condition occurs when (1, +m)order due to A, coincides with (n, + m+1)order due to
A,. The new position implies that

A+2x=(ny +mA; =(ny +m+1)A, ..(4.122)
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i cting Eq. (4.121) from Eq. (4.122), we get
* 2x=mh, =(m+ 1,

-.(4.123)
mhy =(m+ DA,
2
Ay
7 " (A =2,) .(4.124)
substituting the value of min Eq. (4.124), we get
A A
2x=mh, = 1772
ll ‘12
A A
‘ _ an. Ny
or A=A, =Ar= 2x «.(4.125)
Therefore, A, and A, are quite close so xlxz =A
22
AL =— ..(4.126)
or —

Thus, measuring mirror movement between two best contrast positions of interference
fringes, AA can be obtained.

Example 4.17. Michelson interferometer is set for straight fringes using light of A =5000 A. Calculate the

mirtber of fringes that move across the field of view, when one of the mirrors is moved back by a distance of
0.1 1,

Solution, In Michelson interferometer,
Given that : A =5000 A , (x,-x,)=01mm, n=?
We know that, 2 (x, —x;)=nA
n=——————
A ,
_2x01x107> 2000
© 5000x10°° 5

- ' the beams of
Mflmple 418, A thin tmnsparen‘t sheet of refractive index =‘1.6 1 Imtrotgtcliilg:eizz ;’.}C neseif
Ichelgoy, iterferometer and q shift of 24 fringes for A =6000 Ais obtained. Ca

or

=400

Soloas
'-Tlutmn_ In Michelson interferometer,

i;ven thélt:z‘z"6000A=6.0><10'7 m, p=16 n=24; t=?
. ¢ knowy that, 2t(u-1)=m\
}= na
2(p~1) , E
24x6.0x1077 _24x6.0x10 " _190x107" m
T Tox@6-1)  2x06

i t=12x10"° m.
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Formulae at a Glance

4.1 Phase difference () = 3;1'3 x path difference(x) ;

x=(5P-SP)
4.2 In Young’s double slits experiment
(@) Resultant intensity
Ii= 012 + ag + 2a,a,cos ¢
I; and I, be intensities of two waves

where a,,a, = amplitudes of two
light waves

= phase difference
or I=I1+Iz+mcosq:»
(b) At maxima,
¢ =2nm, x=nh
L = (@ + a2 =1 + L+ 2/11,
Lo >4+ L)
(c) At minima, ¢ =(2n+1)m,

x=(2nt l)%

Imin = (@ =ay)* =L + I, -2Jh1,
Li<(h+1)
Ifa =a,then] , =0
(d) Average intensity I, =1 + I,
4.3 Theory of interference fringes

2xd
(a) (SZP_S]F)='F

where
S, P- S, P = path difference
(2d) = separation between two slits
D = distance between slits and screen
x = distance of the observed fringe

from central fringe or displacement

(b) Position of bright fringes
—z-x—ﬂ =nh or x =@
D

(c) Position of dark fringes

(2nt YA _ 2xd
2 D

I e o s e s T ]

_(2n£1)AD
or X = 4d

AD
(d) Fringe width (x,-x,) = M

4.4 Fersnel’s biprism

(a) The wavelength of monochromatic light
2d 2d
- )B (a+ !:f)ﬁ
where a= distance between slits
and biprism,
b = distance between biprism
and screen.
(b) Distance between 2 virtual sources
(1) deviation Method : 2d =24 (u - 1)a
where a = refractive angle of biprism.
(if) displacement Method : 2d =[xy
where x =size of image formed by
first position of lens
y = size of image formed by
second position of lens.
4.5 Interference due to thin sheet
(n -1t

(a) n= l
(b) The thickness of the plate
M i~ _ X x(2d)
Oy @y

where n= number of fringes,
x = displacement,
1 = refractive index of sheet.
4.6 Interference from parallel thin film
(a) Interference due to reflected light
The path difference A =2t cosr
where u = refractive index of film,
t = thickness of film,
r = angle of refraction.

() For maxima, 2ptcosr= (2n+ 1)%'
[Film will be bright]

(i) For minima, 2utcosr =ni
[Film will be dark]




INTERFERENCE 239

(b) Interference due to transmitted light
(i) For maxima, A =2pfcosr=mnh

[Bright film]
(if) For minima, A= 2pfcosr=(2nt 1)_27&

[Dark film]
4.7 Wedge-shaped film [Reflected case]
(a) For Bright fringes

2utcos(r+a)=(2nt 1)%

(b) For dark fringes
2utcos(r+ a)=ni
p = width of single band= fringe width
(x,—x%) - A
m 2na

where x, = distance of nth dark band from
the edge of the wedge
x, = distance of (m+ n) th dark band
from the edge of the wedge
a = angle formed by wedge film.

4.8 Newton'’s ring 2t =%

where t = thickness of the film,
r = radius of the ring and
R = radius of curvature.
(a) Newton'’s ring by reflected light
(D = Diameter of ring)
(i) For bright ring
2

A
Y wntD2
2= =(n2 )5

o 2o (mEDAR

2
or D= J(2AR)[(2n£ 1)
(1) For dark ring 2-2% =n\
or r* =m\R or D =2nAR
(b) Newton’s ring by transmitted light
(i) For bright ring
2

2-2_171 =nh or 1= nkR

or D= 2.[(n\R)

(1) For dark ring

7 A
2xﬁ_(zn:1)2

AR

or D =+/2AR x,/(2n£ 1)
(c) Wavelength of sodium light

= D3r+n = Dr%
4mR
where D, ., = Diameter of (m+ n)th
ring in air.
D, = Diameter of nth ring
in air.

(d) Refractive index of a liquid :

o D:I+H_D§
- 2 2
Drm-n_Dn

where
D, = Diameter of (m+ n)th ring in
medium of refractive index (u)

D, = Diameter of nth ring in medium
of refractive index (u)

4.9 (2) Newton’s rings by contact of concave and
convex surfaces.

For maxima, D? = M

& (R,-R)
For minima, D§ = 4_’12"_&.&
(R~ R)
(b) Newton’s rings by contact of two convex
surfaces

2 _ 221+ DAR R,

For maxima, e

(R +Ry)
L8 _4n\R R,
For minima, Dﬁ = (R + RQ)
_4mlR‘R2
(C) Dr?l-bn_Dr?_ R1+R2
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4.10 Michelson interferometer (b) White light straight fringes
(a) Shape of fringes t = thickness of the film
. x = displacement of mirror M to bring
(i) Circular fringes the image back their position
For bright rings — 2f cos 0= n\ 2x = 2(n =t
[t = distances differ from M, and M,] i = refractive index of film
8 = angle subtended by circle x=nh=(u-1)t
For dark fringe — 2t cos@=(2n+ 1)% (c) Wavelength of monochromatic light
21
If x, = radius of nth ring “m

L= distance of the fool L from eye where [ = displacement

m = fringes are produced.

X
then tan6 = —E =0 (d) Refractive index of thin plane sheet
_ 13 mA
n= BT
then 2tcos@=2t [1—%} o
: p = refractive index of sheet.
o2 (e) Small difference in two wavelengths from
=2t|1- 2;;_ = nk the same source
A 5
Al ==
2
(2, -x2)= 20 A
Ak = (A = hy) A2 =,

Miscellaneous Solved Numerical Problems

Problem 4.1 Two waves of same frequency have amplitudes 1.00 and 2.00. They interference at a point, where
the phase difference is 60°. What is the resultant amplitude ? [GGSIPU, Dec. 2009 (3 marks)]

Solution. Given that 2, =1.00, 4, =2.00 and ¢=60°
We know that, the resultant amplitude

I T
R= \/“1 +a, +2a,a,c0s ¢

=12 +22 42(1)(2) cos 60°

=1+4+2 =+/7 =2.65 unit.

Problem 4.2 Superimpose the following waves
y, =20sinwt; y, =20sin(ot+60°)

Show also the superimposition diagrammatically. [GGSIPU, Dec. 2013 reappear (3 marks)]
Solution. Given a, =20, a, =20 and ¢ =60°
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The resultant amplitude R= ,/af + a% +2a1a2 Cos ¢

=(20)? +(20) +2 x20%20 % cos60°

=400+ 400+ 400 =20+/3 =20x1.732 = 34.64 = 35

a, sin
Direction tan9=—2—cp-_
a, +a, cos
V3
_ 20xsin6p° _ x5~ 4
20+20 cos60° 20+20x1 3

af 1
0 = tan ‘(—} =30°
V3

Resultant displacement Y =20+/3 sin(wt +30°) for Y =203 sin(ot +30°)
Y
for v = 20 sin(wt + 60°)

for Y = 2043 sin(wt + 30°)

30° 20 unit

Lfory = 20 sin of

Fig. 4.40 Superimposition of two light waves.

Problem 4.3 A light source emits light of two wavelengths A, =4300 Aand &, =5100A|' The source is
used in @ double slit interference experiment. The distance between the source and the screen is 1.5 m and the
distance between the slits is 0.025 mm. Calculate the separation between the third order bright fringes due
the these two wavelengths.

Solution. In Young's double slit experiment,
Given A, =4300 A=43x10""m and A, = 5100 A =5.1x 1077 m.
D=15m 2d=0025 mm=25x10""m
n=3 [for third bright fringes]
px= (), ~(y, =(82=31)=7

[lz"ll]

-7
3x15x(5.1-43)x10°" _ 00144 m =144 cm.

Plﬁﬁng the values : (x, —x;)= 2.5x107°

i
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Problem 4.4 The inclined faces of a biprism of refractive index 1.5 make an nflg{c of 2° with. the base, A sljy
illuminated by monochromatic light is placed at a distance of 10 ¢1 n from the biprisnt. If the drsfan'ce between
two dark ﬁ-:‘nérs observed at a distance of 1 cm from the prism is 0.18 mm, find the wavelength of light yseq,

Solution, In biprism experiment,

Given p=15 a=angle of prism =2°= 9—% radian
a=10cm=0.10m, b=1m, D=a+b=11m
Q@d)=2(n - aa=2x(L5 - I)X%XO.IO=3.49><10_3 m.

A =wavelength of monochromatic source =?
For which fringe width () =0.18 mm =1.8x10"* m

AD B(2d)
bt r W 5, sokl
2d = D
_ 1.8x10"%x3.49%x1073

=5.711x10"7 m =5711 A.

1.1

Problem 4.5 A biprism is placed at a distance of 5 cm from slit illuminated by sodium light of wavelength

5890 A. Find the width of fringes observed in eyepiece at a distance of 75 cm from biprism, given the distance
between virtual sources is 0.005 cm. [GGSIPU, Oct. 2013 (2 marks)]

Solution. Given a=5cm, A=5890A, B=? b=75cm, 2d=0.005cm
The fringe width (B) is given as
B= AD _ Ma + b)
2d ~  2d
_5890x10"%em(5+75)ecm _ 5890x 1078 x 80
- 0.005 cm T 0.005
=4.712 cm.

cm =589x8x107° cm

Problem 4.6 A beam of parallel rays is incident at an angle of 30°with the normal on a plane parallel film

of thickness 4x10™° cm and refractive index 1.50. Show that the refracted light whose wavelength is
7.539x 10~ ° cm will be strengthened by reinforcement.

Solution. For plane parallel film :
Given: t=4x10"° cm, angle of incidence (1) =30°, p=15

Show that: A= 7.549x10"° cm will be strengthened by reinforcement in reflected light.

_sini . sini . ]
e = smr=T = smr=%§=0.33

cosr=v1-sin? r = 1/1—(0.33)2 =0.9432,

* Thin film in reflected region.

2putcosr=(2n -1) % ; n=1,23,4
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_Anteosr 4x1.5x4x1075x0.9437 22.6488x10-5

T (2n-1) @2n-1) n-1) cm
n=l, % =22‘648§"10_5 =22.6488x1075 e,
n=2, A, =22'648§" 107 7 5496105 em.
n=3, Ay =22'648g"10“5 =4.5297x1075 cm.
and n=4, Ay =22'648§,"10_5 =3.2355x10° cm,

5o the wavelength 0f 7.5496 x 10™° cm and 4.5297x 10~ cm will be strengthened by reinforcement.

Problem 4.7 Interference fringes are produced by monochromatic light falling normally on wedge shaped
film of cellophane whose refractive index is 1.4. The angle of wedge is 40" and distance between successive
fringes is 1.25 mm. Calculate the wavelength of light used.
40 314

<060 180 Mdian, B=125 mm =1.25x10"°m.

For normal incidence, the fringe width Bis

A
B_2p0.

Solution. Given p =14, a=40"=

[here A = wavelength of monochromatic light]

Then A=2pap

cox1dx_20x3.14 o5, 1073 =6.784x10~" m =6784 A
60x60x 180

Broblem 4.8, In Newton's ring experiment an air film is formed between two convex surfaces each A
;f Urvature 1 m, Newton's rings are generated by using a light of wavelength 5000 A. Find the distance
thween 16th and 9th dark rings.

Solution, Given n=16 or 9, A.=5000, A=50x10""m, R, =R, =1
We know that the diameter of nth dark ring (if there are two convex surfaces).

2 _ 4mA Ry R, [if system is in air]
" (R{+R,)
Then radiys i f(l;z A Iil II:Z)
175
For n<16 1, =\F6XS'OXIO_7X X1 _5x10* m=2mm
16 1+1

Mo 5x50x10 7% Ix1_y 51073 m=15mm
fo = 1+1

en A: ) —90-1.5mm =0.5 mm.
N distance between 16th and 9th dark rings =~ =2.0-1

T T Y 7 e

i e P O S A L TS 1

e e m—
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Problem 4.9 Newton'’s rings are observed normally in reflected light of wavdengtfl 5.9%1075 g The
diameter of the 10th dark ring is 0.50 cm. Find the radius of curvature of the lens and thickness of the film,

- ” -3
Solution. Given A=5.9x10"%cm =59x10""m, n=10, D, =0.50 cm =5x10""m
We know that diameter of nth dark ring is
D2 =4nAR

Then radius of curvature R will be

roDn __(50x107%)

= = =1.06 m =106 cm.
4nh  4x10x59x1077
The thickness of the film is
2 2
r r
2t="— t=—
R 'T2R
2 -3,2
=&=M_)=2_95x10‘6m as r=£)1=.
8R 8x1.06 2

Problem 4.10 In a Newton's ring experiment, the wavelength of light used is 6.0x 10™°cm and the
difference of square of diameters of successive rings are 0.125 cm*. What will happen to this quantity if :

(1) The wavelength of light is changed fo 4.5x 107°em?
(i) The liquid of refractive index 1.33 is introduced between the lens and the glass plate ?
(i) The radius of curvature of convex surface of the plano-convex lens is doubled ?
Solution. Given A=6.0x 1077 cm =6.0 x 10" m,

(DZ,, = DZ)=0125cm?=125x 10"°m? [in I medium]

(1) Since we know that

4mAR
D . —Dj = )
Tl
Here m=1 [because as per question, difference is for two successive rings]
4AR
2 2 .
Dn+1 i Dn =T .(11)
T8
From Eq. (ii), we see that
(D§+l - Dr::") o
(D:+1 B Dr? )L‘ A
Then 5 =
(Dn+l + Dn )12 KZ
- -7
or (Dp1 =Dy, =f(D§+1 -D)),, [ =60x10""mand 4, =45x 107" m]
2 2y _45x1077 B S§
Then (Dn-i-l_Dﬂ)Xz ‘—6_.0:10_—7-XI.25><10 m*“=938x10""m



or

Problem 4.11 A Newton ring arrangemen
' 12 =5000 A and it is found that the nth dark rin
radius of curvature of curved surface of the lens is

and

or

or

= 5000xn=-(n+1)x 5000

= n=5
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(i7) From the Eq. (i), it can be seen that

(Dz -Ds)oc-l-
H

m+n

2 2
Then [Dhyan = D"]frnedium m
2 2 o —
(D= D iimesdins 1

[where p; and p, are refractive indices of media I'and I respectively]

2 2 K
[Dm +n _Dn )Hmedium =[”_1] [Dl‘?‘l+n _Drf)l’mediurn
2

1x1.25x10° 1
=%- [as p, =1.33] !
=9.40x10"%m?
(i) From Eq. (i), we see that =
(Drzn-l-n_ Di)ccR ,
(D%, - D2 i
= ) R EHl
m+n n/Jarrangement _ 1 . _ _ {
e ==L [Given R, =2R, =2R] i
(Dm+n Dr:)Harrangement E f,; b
i
D2 — D? =2R D2, -D?) 1
(Dpyan— n)Harrangement _Tx[ m+n n/larrangement 1
il i
|

—2x1.25x10°m? [asp,=133]
=250x10"°m? 1
¢ is used with a light sources of wavelength A, = 6000 A and

g due to A, coincide with (n+ 1¢hdark ring due to A, If the

is 90 cm, then find the diameter for the nth, dark ring for 1.,.
[GGSIPU, Sept. 2009 (3 marks)]

Solution. Given A, =6000 A for nth ring
A, =5000 A for (n+1)thring, R=90 cm =09 m
(D, )11 =(Dya )12 [+ D, ={/4nAR]

J4nl1R=W : }

nhy = (n+Dhy i

D" =,(4n11R
- -3
95=J4x5x6000x10 10,.0.9 =3.286x107°m
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Problem q.12 Light containing two wavelengths A, and A, falls normally on a plano-convex {ens of radius
of curvature R resting on a glass plate. If the nth dark ring due to A, coincides with (n+ 1)th dark ring due to Ay,
AR
Prove that the radius of the nth dark ring of Ayis |-—1 .
(A,=2,)
Solution. We know the radius of nth dark ring due to A

= ,h:'p\.lR (i)

The radius of (n+1)th dark ring due to Ay

= J(n+T)A,R o (i)

According to problem, both are equal, hence
r=ynk R =[(n+1)A,R

or nA,R=(n+1)A,R
or n= Hi__ w(101)
(A =2y)

From Egq. (iii), substituting the value of # in Eq. (i), we have

A AR
r=J(n\R) = #(l:-lkz) Hence proved.

Problem 4.13 In Newton's ring experiment the diameters of the fourth and twelfth dark rings are
respectively 0.420 cm and 0.726 cm. If the radius of curvature of the convex surface forming the air film is
225 cm, what is the wavelength of the radiation ? What is the radius of the fourth ring at this wavelength if
the medium between the convex lens and glass plate is water of refractive index 1.33 ?

Solution. For Newton'’s ring experiment,
Given D, =0.420 cm, D12 =0.726 cm, n=4, (m+n)=12, m=8
R =225 cm, D =diameter of dark ring.
A for air film =? and radius of 4th ring (r,)=? if p=1.33

D%, - D? (0.726) - (0.420)2
= = cm

- m+n
4mR 4x8x225
0.527076 - 0.1764
= =4.871x10° cm =
4x8x225 *107" o= AB7LA
2
4
* 2ut=n) and 2t=~1'32—
r2
H Iy =n
ence Rp n
= 72 _ AR [ =1.33]
1!

4x4.871x107° x225
= T4 = J 133 =0.182 cm.




v Diameter (D) =2r=0.005m, t=?

INTERFERENCE 247

plom 4.14 N.cmtr'm’s rings are f)hsm-m'd normally in reflected light of wavelength 5893 A . The diameter
of the 101 dark ring is 0.005 m. Find the radius of curvature of the lens and thickness of the air filnt.
[GGSIPU, Sept. 2005 (3 marks) ; Dec. 2017 (3.5 marks)]

Solution. Given that, wavelength (1) of reflected light =5893x 10" 10 n=10(dark), R=2

b

The condition for dark ring (in case of reflected light)
D? = 4n\R
_D* _ 0005x0005
" 4nh 4x10x5893x10° 10
The thickness of the air film will be

m =1.061 m

~10x5893x107*°
2

m =2947x10"% m.

Problem 4.15 A thin planoconvex lens of focal length 1.8 m and of refractive index 1.6 is used to obtain
Newton’s ring. The wavelength of the light used is 5890 A. Calculate the radius of 10th dark ring by

(i) reflection and (ii) transmission.
Solution. In Newton’s ring,
Given: f=1.8m =180 cm, p=16, %=5890 A=589x10"7 m.

Here we use the lens formula,

1 1 1
1 -n[—-—]
f R, R,
S L1
R, =R and R, =t en?_(p— )§

R=(u-1)f

=(1.6-1)x 180 cm —0.6x180 cm =108 cm =1.08 m.
() Radius of 10th dark ring (in case of reflection)
r: =nAiR

r = J(nAR) ~10x5.89x1077 x1.08 =0.252 cm.
n

(if) Radius of 10th dark ring (in case of transmission)
, @n-1)R

2

Tn

@n-1)AR
A
_ [@x10-1) 5 891077 x1.08 =0.245 cm.
=\ 2

P

1

A At siaies Trbr e

S T
i
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Problem 4.16. Two planoconvex lenses cach of radius of curvature 1.0 m are used to observe Newton's

rings with their curved surfaces in contact with each other in light of wavelength 600 nm. Find distance
between 10th and 20th rings.

Solution. Fig. 4.41

D* D?
=t =
hrth TR teR,

and for nth dark ring

2t=ni

D*> Dp?
7| EeclREN i (R §
[8R1+8R2] "

Writing D=2r,

Fig. 4.41

where r =radius of nth ring
. _|:117LR1R2 ]1!2
" (R{+R,)
The desired separation,

[AR.R

1/2
1% 1/2 1/2
20 Mo = } [(20)™° -(10)"*]
_RI + R2

'-6X10-7x1><l L 1/2 1/2
= [20)™* -(10)"%]

1+1

=0.717x1073 m =0.717 mm.

Problem 4.17 In a Newton's ring arrangement with air film observed with light of wavelength 6x107°
cm, the difference of squares of diameter of given successive rings is 0.125 cm?2,

What will happen to this quantity if :
(a) wavelength of light is changed to 4.5%10~5 o ?

(b) liquid of refractive index 1.33 is introduced between the
(c) the plane glass plate is rep
planoconvex lens ?
(d) the plane glass plate is replaced by planoconvex lens
Solution. (a) We know that,

lens and the plate ?
laced by a planoconcave lens of radius of curvature twice that of

identical to one and put on the top of it ?

D2  _p?_4mR

m+n n
H

In the present case, m=1

2 2 4AR
Dn+1 ¥ Dn = T
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ne wavelength changes from A, 10 A,, we have

When !
2
(2 Mi’ﬂ)z_.zh
(Dml D!I)lz 2

2 A
(OB, - -0, 2
1

_0125x4.5x10°

=0.0( 2
6x10-° o
(b) When the liquid of refractive index p is introduced
{
(D?Hl D2 )'lir =n W
(Dml n )liquid
(Du 1 Dz) 0125
— (D"ﬂ )l:qmd . m nalr =133 =0.094 cm?

() The air film causing interference in present case shall have thickness t, corresponding to
#hdark ring

2
7 . nA

t
"“2R 2@R) 4R 2

hich gives s,

D;,i1 % D;,2 =4A(2R)=2x4AR Fig. 4.42 Planoconcave and
planoconvex lens.

=2x0125 =0.250 cm?

lhd(d) In this case, the thickness of air film corresponding to
¥k ting shall be

whid’]

n+l

Bvesus 2 _ 2 _o9p _1 Ry
' 2 Fig. 4.43 Two planoconvex lens.

=1,0125=0.0625 cm?

by

| helson
i &3‘%\ Caleulate the distance between successive positions of the moz;:;t;fg ;?:;::)Ir;g; gd;{c 1e

" Siting best fringes in case of sodium source having wavelengths

In Mlchelson interferometer,

I’\J

Sufu tl o

A < -7
: 5396A=5.895x10‘7m; 2, =5896 A =589x107" m.

Al -id
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We know that small difference in two wavelengths :

A=h A, =Mt
Sty 27 2(xy -x)

_MAy  5896x1077 x5.89x1077
" 2A) 2x(5.896-5.890)x10~7

(xp-x,)=28.94A

or (x5 —x,)

Problem 4.19 A shift of 100 circular fringes is observed, when movable mirror of Michelson interferometer
s shifted by 0.295 mm. Calculate wavelength of light.

Solution. In Michelson interferometer,
Given that : (x5 —x;)=0.295 mm, 1n=200, A=?

We know that,
2(x, —x;)=nh
- - 2(xy —x,)
n
2x0.295x1073 i
100 R0 m
A =5900 nm.

Conceptual Questions

4.1 “Any monochromatic light is necessarily coherent,” true or false ? Justify your answer.,

[GGSIPU, Dec. 2013-reappear (2 marks)]

Ans. Monochromatic light is coherent, if the waves of the monochromatic light oscillate in the same
direction and have the same frequency and the phase. In other words, the monochromatic light must be
collimated. This requirement applies to a laser as Nuclear Ghost mentioned it. In contrast to that the waves of

a light which come from the light bulb are incoherent, as the wave oscillates in different directions which have
different frequencies and phases.

4.2 What is meant by coherent sources of light ? Can two identical and independent sodium lamps act as
coherent sources ? Justify.

Ans. Two light sources are said to be coherent if they continuously emit light waves of same frequency
(or wavelength) with zero or constant phase different between them. Two independent sources cannot act as
coherent sources. The emission of light in them is due to millions of atoms in which electrons jumps from
higher to lower orbit. The process is occurs in 10785, Thus phase difference can remain constant for about 10~%s
only ie., phase changes 10° times in one second. Such rapid changes in the Positions of maxima and minima

cannot be detected by our eyes. The interference pattern is lost and almost a uniform illumination is seen on
the screen.
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4.3 What are bright and dark fringes in case of Young double slit experiment ?

Ans. The intensity maxima and minima in the interference are called bright and dark fringes. The fringes
are neither image nor shadow of slit, but a locus of a point, which moves in such a way that point the path
gifference between the waves from the two sources remain constant, in case of bright fringes, it is integral

multiple of the wavelength and in case of dark fringes, it is odd multiple of half of the wavelength. An array of
fringes is called the interference pattern.

44 Can two independent point sources of light operating under similar conditions produce sustained
interference ? [GGSIPU, Nov. 2012 (2 marks) ; Dec. 2009 (1 mark)]

Or

Can non-coherent sources produce interference ? Justify your answer.
[GGSIPU, Dec. 2017 (2.5 mark)]

Ans. No, the two independent point sources of light operating under similar conditions may produce
light of the same wavelength and amplitude, but they will not able to satisfy the most essential requirement of
coherence for sustained interference i.e., constancy in phase relationship. The two independent sources emit
light the phase difference between the two interfering beams goes on varying randomly. As the phase
difference between the two interfering beams goes on varying randomly with time, it will not be possible to
obtain sustained interference pattern. ‘

4.5 What is difference between fringes obtained by Fresnel’s biprism and those obtained by Newton's rings ?
[GGSIPU, Sept. 2008 (2 marks)]

Ans.(i) The biprism fringes are straight and equally spaced whereas the fringes in Newton’s rings are
circular and not equally spaced.
(i) In biprism fringes are obtained by division of wavelength whereas in Newton’s rings, they are
obtained by division of amplitudes.
(iif) In biprism, fringes are non-localised while in Newton’s rings they are localised.

4.6 Why two independent sources of light of the same wavelength cannot pr oduce interference fringes ?
[GGSIPU, Sept. 2009 (2 marks)]

Or

Why two independent sources cannot produce observable in terference pattern ?
[GGSIPU, Jan. 2015 (2.5 marks)]

Ans. If two independent sources of light of same wavelength are placed side by side, no interference fringes
or effect are observed because the light waves from one source are emitted independently of those from the
other source. The emissions from the two independently do not maintain constant phase relationship with each
other over time, Light waves from an ordinary source such as light bulb undergo random phase changes in time
intervals less than a nanosecond. Therefore, the conditions for constructive interference, destructive
interference or some intermediate state are maintained only for such time intervals. Because the eye cannot
follow sych rapid changes, no interference fringes/effects are observed. Such light sources are said to be

incoherent,
47 Why the colours of thin films in reflected and transmitted light are complementary ?

[GGSIPU, Nov. 2012 (2 marks)]

Ans. In the reflected system, there is an additional path difference of A/2 between the two rays
reflection at a denser medium, while in the transmitted

Producing i ffers

g interference as one of the rays su _ _

SYstem it is not so. Thus for the same path difference in the reflected system, a bright band will correspond to a
' the two systems are complementary.

92k band in transmitted system and vice versa. Thus,

i

1
{
]
i
i
i
iy
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4.8 Why does the colonr of the oil film on the surface of water continuously changes ?

Ans. The position of the bright and dark fringes produced by thin oil films depends upon the thickness
of the film. The thickness of oil film on the surface of water continuously varies and as a result, the position of
the coloured fringes also varies. This appears as a variation in the colour of the oil films.

4.9 Explain why excessively thin film scen in reflected light appears dark. [GGSIPU, Sept. 2009 (2 marks))

Ans. Excessively thin film is dark in reflected system. The effective path difference between the interfering
reflected rays is 2ut cosr—A /2 When the film is excessively thin, so that t is practically zero, the effective
path difference is &/ 2 This is the condition for minimum intensity. Hence, the film appears dark.

430 The central part in Newton'’s rings seen in reflected light appears dark. Why ?

[GGSIPU, Dec. 2015 (Reappear) (2 marks)]

Ans. In Newton's rings experimental arrangement at the point of the contact between the lens and the
glass plate the thickness of the air film is zero. Therefore, there is no path difference between the interfering
rays due to difference in the path lengths. But one of the rays suffers a phase change of = on reflection at the

surface of the glass plate, i.c., denser medium. This is why the rays suffer destructive interference and centre
appears dark.

4.11 What are Newton’s rings ? Why the central ring is dark when observed in reflected light ?
[GGSIPU, Sept. 2010 (2 marks)]
Ans. When a plano-convex lens of large radius of curvature is placed with its convex surface in contact
with a plane glass plate, on air film is formed between the lower surface of the lens and the upper surface of
the plate. If monochromatic light is allowed to fall normally on this film, a system of alternate bright and dark
concentric rings with their centre dark concentric rings with their centre dark is formed. Since these rings
were discovered by Newton, so these are called Newton’s rings. The central ring is dark when observed in
reflected light because effective path difference A =2¢ + % - At the point of contact t =0, then A = % . This is

the condition for minimum intensity. Hence the central ring is dark.
4.12 Explain, why interference fringes are circular in Newton's rings.

[GGSIPU, Sep. 2013 (reappear) (2 marks) ; Dec. 2008 (2 marks)]
Or

Why Newton’s rings are circular 7 [GGSIPU, Sept. 2009 (Reappear), 2 marks ; Dec. 2018 (3 marks)]

Ans. In Newton's ring experiment, the path difference of two interfering waves is dependent on the
thickness of the air film. In the set up of this experiment, the locus of same thickness forms a circle with centre
at the point of contact between the lens and plane glass plate. Therefore, the condition of constructive
interference or destructive interference is satisfied over a circle and the fringe system becomes circular.

4.13 What happens to the ring system if a plane polished mirror is used instead of a glass plate in Newton’s ring
arrangement ? [GGSIPU, Dec. 2013 (2.5 marks)]
Ans. If a plane polished mirror is used instead of a glass Plate in Newton'’s ring arrangement, the
interference pattern produced due to reflected and transmitted light will be superimposed and we get these
two patterns, which are complimentary their superposition. Hence we get uniform illumination.
4.14 The inferference fringes produced in the Newton’s ring experiment are real or virtual ? Justify.

[GGSIPU, Dec. 2009 (1 mark)]

Ans. The interference fringes produced in the Newton'’s ring experiment are real because as we are
observing the reflected geometry, the centre of the ring system is dark spot. These rings are formed in the
plane of the film and there are observed by a microscope. So these rings are real.
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415 Why do we prefer a convex lens of large radius of curvature for producing Newton's rings 7
[GGSIPU, Nov. 2012 (2 marks)]

s. In Newton’s ri s
t:?n e he dig;i taeirzlf\ilemetnt, ’lt is prefen-ed to be large radius of curvature Lens because (1) It
T meters ; () Large value of radi e‘}r R S TINER _Whlch increases the accuracy in the measurement of their
’ e To neal lcltlS g curvature in the decrease of the thickness of the air film at any point
glect t* as compared to 2Rt. (iii) The angle of wedge-shaped film enclosed

and hence it is jus
petween the glass plate and the lower surface of lens is very small and hence can be neglected.

EXERCISES

Theoretical Questions.

41 What is the interference of light ? [GGSIPU, Nov. 2012 reappear (2 m arks)]

sary for obtaining interference

? What are the conditions neces
[GGSIPU, Sept 2004 (3 marks)]

42 What is interference of light waves
fringes ?

What are the necessary conditions for obtaining interference fringes 2

[GGSIPU, Sept. 2013 reappear (2 marks)]
[GGSIPU, October 2013 (2 marks)]

43

44 Give conditions of sustained interference.

at scientific, well-labeled diagrams,
front and another due to

the classification of interference in two classes,
division of amplitude.
[GGSIPU, Dec. 2016 (3 marks)]
when two sinusoidal coherent
rpose to produce interference.
[GGSIPU, Dec. 2016 (4 marks)]

45 Ilustrate with ne
that is, one due to division of wave

ression for the intensity distribution

4.6 Derive the mathematical exp
A,and a phase difference of ¢ supe

waves with amplitudes 4, and

t. What is its importance in physics ?

the Young's double slit experimen
[GGSIPU, Dec. 2009 (5.5 marks)]

4.7 Describe
d the expression for fringe width.

[GGSIPU, Sept. 2009 (5 marks)]
fringe width in case of Young's double slit experiment. Prove that in this case
d bright bands are of equal width. [GGSIPU, Nov. 2012 (5 marks)]
d destructive interference du

4.8 Discuss the Young's double slit experiment and fin

4.9 Find the expression for
of interference dark an

410 Obtain the relations for constructive and ;
the conditions under which these equations are dedue=C. 4 od

. i ini tained interferenc

? List down conditions for obtaining a good Sus e

411 What are coherent sources (GGSIPU, Sept. 2 011 reappear (5 marks)]

e to two slits clearly pointing out
[GGSIPU, Dec. 2008 (5.5 marks)]

s inversely proportional to the distance

pattern. |
i adjacent bright bands 1
412 i:& :11:1:1 :hSTi ;lsmme between ad]  ptiondt o e Ss
t conditions for obtaining sustained interference pattern.
[GGSIPU, Sept. 2010 (2 marks)]

413 Give few importan

nt sources ? [GGSIPU, Dec. 2018 (2 marks)]

ds for obtaining cohere .
terference of light and coherent sources

414 What are two general metho
ms : in

rinciple. Explain the et
. [GGSIPU, Sept. 2010 reappear (3 marks)]
n with good contrast ?

[GGSIPU, Dec. 2010 (2 marks)]

415 State the superposition P

interference patte

416 How would you obtain 2 sustained
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Give the conditions required to get sustained interference. [GGSIPU, Dec. 2012 (2.5 marks)]

What are necessary conditions for obtaining interference fringes ?
[GGSIPU, Sept. 2012 (2 marks)]
Draw a labelled ray diagram depicting interference by a biprism. [GGSIPU, Dec. 2009 (3 marks)]
What is a biprism ? Give schematic diagram showing formation of fringes using Fresnel’s biprism.
[GGSIPU, Sept. 2012 reappear (3 marks)]

Draw a labelled ray diagram depicting interference by biprism.

[GGSIPU, Sept. 2011 (3 marks) ; Dec. 2017 (3 marks)]
What is a biprism ? Give the schematic diagram showing formation of fringes using Fresnel biprism.
[GGSIPU, Dec. 2012 (3 marks)]
What do you understand by Fresnel’s biprism and explain the formation of fringes by it. How do
you determine the wavelength of monochromatic light ? [GGSIPU, Dec. 2012 (4 marks)]

What is biprism ? Explain the construction and working of it with applications. _
[GGSIPU, Nov. 2012 reappear (5 marks)]

Explain the formation of interference fringes by means of Fresnel's biprism when a monochromatic
source of light is used and derive the expression for fringe width. How will you measure a

wavelength of monochromatic light using biprism method ? [GGSIPU, Jan 2015 (8 marks)]
Ilustrate with neat scientific, well-labeled diagram the formation of fringes due to a Fresnel’s
Biprism. [GGSIPU, Dec. 2015 (1.5 marks)]

What will happen to Biprism if,
(i) angle of biprism is increased ?
(i) width of slit is increased continuously ? [GGSIPU, Dec. 2019 (3 marks)]

Discuss the phenomenon of interference of light in thin films and obtain the conditions of maxima
and minima for the reflected light.

[GGSIPU, Sept. 2013 reappear (6 marks), Sept. 2011 reappear (5 marks), Dec. 2017 (6 marks)]
Give the nature of fringes obtained in this parallel films. [GGSIPU, Dec. 2012 (2.5 marks)]
Explain why interference effects are not observed when light reflected from the two surfaces of a
window pane combine. [GGSIPU, Dec. 2019 (3 marks)]

Explain the term temporal and spatial coherence in context of interference phenomenon. Explain
why interference due to division of amplitude is observed in thin films.

[GGSIPU, Dec. 2015 (3 marks)]
[llustrate with neat scientific, well-labeled diagram the necessity of an extended source to observe

fringes in thin film. [GGSIPU, Dec. 2015 (1.5 marks)]
Derive the relation for path difference and subsequently the width of a single band for a wedge
shaped film. [GGSIPU, Dec. 2015 (4 marks)]

What is the effect of increasing the angle of Biprism on the fringes ? Explain.

[GGSIPU, Jan 2015 (2.5 marks)]
Discuss the interference from parallel thin film. Describe salient features of the fringes formed. Give
one of its applications. [GGSIPU, Dec. 2013 reappear (5.5 marks)]
Discuss the phenomenon of interference of light in thin films and obtain the conditions of maxima

and minima. Show that the interference patterns in reflected and transmitted lights are
complimentary. [GGSIPU, Nov. 2012, Sept. 2009 (7 marks)]
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Why interference are observed in case of thin films not in case of thick films and why a broad source
of light is required to observe interference in thin films ?
[GGSIPU, 2nd counselling, Nov. 07 (2 marks)]

Why interference fringes are observed in case of thin films not in the case of thick films ?
[GGSIPU, Sept. 2012 (2 marks)]

What will happen if a wedge shaped film is placed in white light ?
[GGSIPU, Dec. 2012 (2 marks)]

With the help of a labeled ray diagram discuss the formation of Newton'’s rings by reflected light.

Hence derive an expression for the diameter of n th dark ring.
[GGSIPU, Sept. 2010 reappear (7 marks)]

Why central ring is dark instead of bright some times in reflected system. Give appropriate reason.
[GGSIPU, Jan 2015 (2.5 marks)]

Show that the thickness of successive Newton’s ring goes on decreasing.
[GGSIPU, Dec. 2018 (2 marks)]

In case of Newton's rings obtain the relation between the dark ring diameter and air film thickness.
[GGSIPU, Dec. 2019 (2.5 marks)]

Explain the formation of fringes in Newton's ring experiment. Give its application to find out

wavelength of light. [GGSIPU, Sept. 2012 reappear (7 marks)]

How are the circular fringes of Michelson’s Interferometer differ from Newton’s rings ?
[GGSIPU, Dec. 2010 (4 marks)]

What are Newton's rings ? Explain the formation of Newton’s rings by reflected system of light. Also

show that spacing between rings goes on decreasing with increased order.
[GGSIPU, Oct. 2013 (8 marks)]

Describe and explain formation of Newton's ring in reflected monochromatic light. Prove that in

reflected light diameters of the dark rings are proportional to the square root of natural numbers.
[GGSIPU, Dec. 2013 (8 marks)]

Discuss in brief the conditions under which the centre of Newton'’s ring is bright or dark.
[GGSIPU, Dec. 2007 (3.5 marks)]

What are the conditions for maxima and minima in case of Newton's ring due to reflected light and

how the refractive index of any liquid can be determined by Newton'’s ring method ?
[GGSIPU, 2nd counselling, Nov. 2007 (3 marks)]

Draw a neat ray diagram for Newton’s ring interference pattern indicating clearly, how division of

amplitude takes place for a given incident beam and the path difference introduced thereby ?
[GGSIPU, Sept. 2007 (2 marks)]

COr}sider the formation of Newton's ring by a monchromatic light of wavelength (A) from an air film
(usmg planoconvex lens with radius ‘R). Derive an expression for radius of nth dark ring and show

that the spacing between the rings decreases as ‘rf increases.
[GGSIPU, 2nd counselling Nov. 2006 (6 marks)]
dark ring at the centre.

Explain why in Newton'’s ring experiment fringes are circular with
[GGSIPU, Sept. 2005 (2 marks)]

453 The:
The interference fringes produced in the Newton's rings experiment are real or virtual. Justify. -

[GGSIPU, Dec. 2009 (1 mark)]

i !
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In the formation of Newton’s ring ; derive an expression for the radius of nth dark ring in the case of
reflected light. How are such rings used for the determination of refractive index of a transparent
liquid ? [GGSIPU, Sept. 2005, 2004 (3 marks)]

Write a note on Newton's ring. What determines whether the centre shall be bright or dark ?
[GGSIPU, Dec. 2004 (6 marks)]

In 2 Newton's ring experiment the centre is bright instead of dark. What is the reason ?
[GGSIPU, Sept. 2004 (2 marks)]

How can Michelson's interferometer be used to be determine the difference between the two D-lines
of sodium ? [GGSIPU, Sept. 2005 (3 marks)]
The Michelson interferometer is based upon the interference of light due to division of wavefront or
division of amplitude. Justify your answer. [GGSIPU, Dec. 2007 (4 marks)]
How can Michelson interferometer be used to be determine the difference between two D-lines of
sodium. [GGSIPU, Sept. 2005 (3 marks)]
Explain why a compensating plate is needed in Michelson’s Interferometer?

[GGSIPU, Dec. 2008 (2 marks), Dec. 2010 (2 marks)]
Explain the formation of fringes in Michelson'’s Interferometer with suitable diagram.

[GGSIPU, Dec. 2010 (5 marks)]
Explain the formation of fringes in Michelson’s Interferometer. Give its application to determine the
wavelength of light. [GGSIPU, Dec. 2011 (6.5 marks)]

Give a well labelled diagram of Michelson interferometer. Discuss the use of compensating plate.
[GGSIPU, Dec. 2012 (6.5 marks)]
Explain using mathematical derivation the formation of the nth bright ring in a Newton'’s ring set up
in the reflected light with a diameter given by two expression : D= J((22R)(2n-1)).
[GGSIPU, Dec. 2016 (4 marks)]

Numerical Problems

41

Two coherent sources whose intensity ratio is 4:1 produce interference fringes, find the ratio of
maximum to minimum intensity in the interference pattern. [GGSIPU, Dec. 2015 (3 marks)]

2
Hint : i=E=EL = & =2,

L 1 &2

lowx _ (& +8) _(Ga) o .

Lin (-2, &
In Young’s two slits experiment, the distance between the slits is 0.2 mm and screen is at a distance
1.0 m. The third bright fringe is at a distance 7.5 mm from the central fringe. Find the wavelength of
the light used. [GGSIPU, Dec. 2008 (3 marks)]

.. __mD . _x(2d)
Hint : I——Z"‘T = A= nD

In Young's double slit experiment, fringes are obtained at a screen placed at some distance ﬁ.o,-n the
slits. If screen is moved by 5x10”2m towards the slits, the change in fringe width is 3x107" ™"
Calculate the wavelength of light used. Given the distance between the slits is 10" > m.

[GGSIPU, Dec. 2011 (3 maris)]

=5000 A.
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o SRR :
Hint : Fringe veith = 24’ if ABis the change in fringe width when the screen is moved by A D, then

AD 5x1072
The incline.d f.aces of a.bilprisrrlx (1 = 1.5) make angles of 1° with the base of the prism. The slit is 10 cm
¢rom the biprism and is illuminated by the wavelength 590 nm. Find the fringe width observed at a

distance of one meter. [GGSIPU, Nov. 2012 (3 marks)]

m = 600 nm.

Hint: d=2a(p —Da; D=10cm +1m =11m, a=1—1;]radian,

% =590nm =59x107m, a=0.1m

AD 59x107 x1.1x180

1 ‘dth - —— = = -4
Fringe wi B i 01505 r 0.000372 m =3.72x 107 m.

Newton's rings are formed between the plane surface of glass and lens. The diameter of third dark
ring is 102m. When the light of wavelength 5890 x 10°m is used at such an angle that the light
passes through the air film at an angle of 30° to the normal. Find the radius of the lens.

[GGSIPU, Dec. 2018 (4 marks)]

: 2

Hint: 2utcosr=nk = %cosr=nl = Ecosr=31
-2y2
= R 30 U0 B 1225m
4x3xh 4x3x5890x%10 2

Light of wavelength 6000 A falls normally on a wedge shaped film of refractive index 1.4 forming

fringes that are 2.0 mm apart. Find the angle of wedge in seconds.

[GGSIPU, Dec. 2013 reappear (4 marks)]
Hint : Given A = 6000A = 6.000 «107m,p =14,p=2mm = 2x10”m
We know that angle of wedge
-7
oo roo_ EOXI0T 071 %107 radian =22"
up 2x1.4x2x10
Interference fringes are p roduced by monochromatic light of wavelength 5460 A, when a thin sheet
ss 6.3x107 cm is introduced in the path of one of the interfering
d by 6th bright fringe. Compute refractive index
[GGSIPU, Sept. 2008 (4 marks)]

of transparent material of thickne
beams, the central fringe shifts of a position occupie

of the sheet.
Hint : (].l -l)t = HA _ )

nk o o4_ _6_f_5_4_§_0_>.(—19—_—-+ 1=1.52
= g = 0 en

3 A is reflected at nearly normal incidence from a soap film of refractive
ss of the film that will disappear (i) dark, (i) bright.
[GGSIPU, Dec. 2010 (3.5 marks)]

!—ight of wavelength 589
index, (m) = 1.42. What is the least thickne

Hint : Given () = 1.42 and A =5893 A

() For the film to appear bright in reflected light at no
2ut =(2n+ PA/2 = ¢ =(2n+ DA/ (4R)

= t=10375A

rmal incidence :

For least thickness , n=0, t =4/ (4n)
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(i7) For the film to appear bright in reflected light at normal incidence :
2ut =nh = t =nh/(2p)
For least thickness, n=1, t =A/(2n) = t=2075A
Two plane glass surfaces in contact along one edge are separated at the opposite edge by a thin wire,

If 20 fringes are observed between these edges in sodium light for normal incidence, find thickness
of the wire, [GGSIPU, Sept. 2010 (2 marks)]

Hint : Given N =20, A = wavelength of sodium = 589 nm = 5.89 x 107 m.
Let t be the thickness of the wire and I, the length of the
wedge as shown in Fig. 4.46.
The angle of wedge 0=t /1,
Fringe width in air wedge p=1/20=Al/2
If N fringes are seen, that I = Nj ;

B=ANB/2t -
= t=NA/2=589x10° m. P e

An interference pattern is first obtained using a bi-prism set up. When a thin sheet of glass (it =1.5) of
5 mm thickness is introduced in the path of one of interfering rays, the central fringe is shifted to a
position normally occupied by the fifth fringe. Calculate the wavelength of light used.
2 _ -6
Hint : A = (=1t _ (1.5 1)x5(5><10 )
n

In Newton'’s ring experiment the diameters of the 4th and 12th bright rings are 0.4 cm and 0.7 cm
respectively. Deduce the diameter of 20th bright ring.

[GGSIPU, Dec. 2011 (3 marks), Dec. 2013 (4.5 marks)]

5x10”"m =500 nm.

H‘ t: ?\. o DP?HH = D:

e T 4mR ()
and D} = 4n\R (i)
From Eq. (i) 4AR= D,f,_+,:;__13_§ then D? = ﬁ( Dk - ph

2
D2, = FO x[(0.7)2 —(0.4)?] = % x1.1x0.3=0.91 cm,

In a Newton'’s ring experiment the diameter of the 13th ring was found to be 0.590 cm and that of the
drd ring was 0.336 cm. If the focal length of the plano-convex lens is 50 cm, calculate the wavelength

of light used. [GGSIPU, Sept. 2008 (2 marks)]
Hint: |—4|=( -1}(1} = R=(u-1
R=05x50=25 cm.

_ Dy, D8 _(059)* - (0336)°
4mR 4x10x25

=22520 A

Note wavelength of light is too much being wrong data.
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Newton's TIRgR are formed by a light of wavelength 4000 A

() Detween the ek and 6th Bright fringe, what fs the change in thickness of the air film ?
(i u the radins ot corvature of the curved surface 14 5.0 em, what is the radius of ded bright fringe ?
[GGSIPU, Dee. 2019 (4 marks)]

b
.

by (02 l" >, =(2n4 I)’-k
Hinid R RS 1
'.\ w710 T‘“, fh'-'l.“kln ?In

Spacing, At mly =l ™= 60 pm

24 AR
(i, = \( '-'-?;, R 2,65 %10 em

A drop of liquid of volume 0.2cm is dropped on the surface of the tank water of area ITm 2 The drop
spreads uniformly over the whole surface, White light is incident normally on the surface. The
spectrum contains one dark band whose centre gas wavelength 5500 A in air. Find the refractive
index of the liquid. [GGSIPU, Dec. 2019 (2.5 marks)]

0.2 cm -
Hint: | = = 2%10™cm

100x100" "

A 1x55x107
2utcosr=nd and  p i 2 . =1375
; = " 2xax107 x1
Two wavelengths of light A and A, are sent through a Young's double slit experiment set up
simultancously. What must be true concerning A, and A, if the third order A, bright fringe is to

coincide with the fourth order A, fringe ? [GGSIPU, Dec. 2016 (3 marks)]
Do 4AND 3
Hint: 0, =f, = —l—w—2A— = Ay==i
Py =Ps 20 274"
Newton's rings are obtained by source emitting light of wavelength A, = 6000 A and A, =5000 A.ltis

found that the n"dark ring duce to A coincides with (1= 1" dark ring due to A,. If the radius of

curvature of convex surface is 90 cm, calculate the diameter of n" dark ring of A,.
[GGSIPU, Sept. 2009 (3 marks) |

Hint : D, = dndy R = 4(n+ DA, R = nh =(n+ DA, = n=5

and then D, = J&TpiTR =3.26 nm.

Michelson interferometer experiment is [wrl'nrmcd with a source which consists of two wavelengths

4882 A and 4886 A . Through what distance does the mirror have to be moved between two positions

of disappearance of fringes ?
)‘? A ?h-y

Hint ; - Y e
s s 2xy-%)) A%y~ x)

MtA (4882 *_'__‘_’_’_‘.“f’_)é = 4884 A = 4884 x10° 0m

B e @ ———

- 2
and A = (4886 - 4882) A = 4 X107 10 meter.
-10 -10
Then A (L L 107" 4519x10" 4 m =0.352 mm.
' BTV 2xdx10° .
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4.18 Ina Michelson interferometer 100 fringes cross the field of view when the movable mirror is displaceq
by 0.022948 mm. Calculate the wavelength of monochromatic light.  [GGSIPU, Sept. 2009 (3 marks))

=3
Hint: p=2_2x0022048x10° o0 o7 _aaeo A

m 100

4.19 The initial and final readings of a Michelson’s interferometer screw are 10.7347mm and 10.7051mm
respectively when 100 fringes pass through the field of view. Calculate the wavelength of light
used.

21 2[10.7347-10.7051] x 10~
n 100
4.20 When a thin glass plate (u = 1.5) is introduced in one of arms of Michelson interferometer using light
of wavelengths 58904 , there is a shift of 10 fringes. Calculate the thickness of the plate.

' . na 10x5890 x 1010
4 t = =
| Hint 2T 5

=5920 A.

Hint : xz-x]=!=n% or A

=5.89x10"®m.

421 In a Michelson interferometer 200 fringes cover the field of view when the movable mirror is
displaced through 0.0589 mm. Calculate the wavelength of monochromatic light used.

Hint:  2(x,-x)=nA
A= 2(xy —x;)
n
_2x5.89x107
T 200
4.22 Sodium light (A =5893 A) is used first in a Fresnel’s Bi-prism set up. A total of 60 fringes are observed
in the field of view of the eye-piece. Calculate the number of fringes that would be observed in the
same field of view if the sodium light is replaced by mercury vapour lamp (A = 5460 A).

[GGSIPU, Dec. 2016 (4 marks)]

=

=5.89x10"" m =5890A.

DA DA

Fhakt Be=—g B
Ps _ ks _ 5893
Ba Ay 5460

Multiple Choice Questions

4.1 If Young’s experimental set up is displaced from air and

immersed in water, the fringe width will
(a) decrease

(b) increase
(d) be zero.

oured because of interference of light. The possible thicknes>

(c) remain unchanged

42 Oil floating on water surface is seen co]
of the oil film is

(a) 100A (b) 10000 A

43. Fringe of width 1.474 mm is observed
when illuminated by light of wavelen

() 1 mm (d1cm

at distance of 50 cm inside the geometrical shadow of 2 wire,
8th 5896 A. The diameter of wire is

(@) 4x107% m (b) 3x107% m (©)2x10"% m @) 1x107* m
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. ¢ of the interference pattern produced by the light of wavelength 6000A is found to

‘l The cfnﬁal g . )
" jittothe position of 4th bright fringe after a glass plate of refractive index 1.5 is introduced. The

¢ the glass plate would be :

thidmess 0.
@ 480 <10~ ®m (b) 8.23x 10 m (c) 14.98 x10™ 6 m (d) 3.78x10 6 m
The phenomeﬂm which produces colours in a soap bubble is due to
@ diffraction (b) dispersion (c) interference (d) polarisation
46 Two light sources are coherent when
(a) their amplitudes are same (b) their frequencies are same

(© their wavelengths are same
(d) their frequencies are same and their phase difference is constant
47 In Young's Jouble slit experiment the distance between two slits is 2 mm and the screen is at a
distance 120 cm from the slits. The smallest distance from the central maxima where the brightest
fringes due to light of wavelength 6500A and 5200A would coincide is

(b) 0.156 cm (¢) 0.234 am (d) 0.20 cm.

(2) 0.117 cm
d a convex lens is irradiated with a parallel beam of

48 A thin air film between a plane glass plate an
ht and is observed under a microscope one finds :

monochromatic lig
(a) uniform brightness (b) complete darkness

(c) field crossed over by concentric bright and dark ring
(d) field crossed over by many coloured fringes.
49 InNewton's ring experiment the diameter of the bright rings are proportional tothes
(a) natural numbers (b) 0dd natural numbers
(c) even natural number (d) half integral multiples of natural numbers.

quare root of :

410 Two waves of equal amplitude and wavelength but differing in phase are superposed. Amplitude of
the resultant wave is maximum, when phase difference is
T
@ () 3_2“_ (c) 2 @
100 and 80 circular fringes

moved through d mm,

in ; _
In a Michelson interferometer, when the Screw is
ively. The ratio is 1; equals

are observed for lights of wavelength &, and A, respect

4 03 (b) 1.25 (c)1.8 (d) 45
N o
€wton’s rings are fringes of
® equal inclination (b) equal thickness
i3 T(c) both equal inclination and equal thickness () equal radii.
. ther and illuminated by monochromatic light, the

int 0 ordinary glass plates are placed one OVer ano
erference fﬁnge & will
R )be incgular shaped (d) not to be formed.

sed in an interference expe

Wo ¢!
i‘“ensit? erent sources of intensity ratio 25:4 are u ,
es of maxima and minima in the interference pattern is

@25:16 (B)49: 4 (©4:9

riment. The ratio of

d)7:3

R —
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4.18

4.19

ENGINEERING PHYSICS -1 il

Interference may be seen using two independent

() sodium lamps (b) fluorescent tubes

(¢) lasers (d) mercury vapour Jamps.
Michelson's interferometer is based on the principle of

(@) division of amplitude (b) division of wavefront

(c) addition of amplitude (d) none of the above.

Two interfering light waves have their amplitudes in the ratio 3 : 2. The ratio of the intensity of
maxima to that of minima will be

(@) 3:2 () 5:1 (c)9:4 (d25:1
One leg of a Michelson'’s interferometer is lengthened so that the mirror is shifted by 0.020 mm. If the
light used has A =5000 A, then number of dark fringes sweeping through the field of view.

() 80 (b) 100 (c) 150 (d) 200.
A biprism of refracting angle 1° is made up of a material of refractive index 1.55. The biprism is
placed at a distance of 13 cm from the slit (source). The separation between the coherent source
formed by it is

(a) 0.35 cm (b) 0.25 cm () 0.5 cm (d) 0.45 cm.
A Fresnel's biprism arrangement is set with sodium light (% = 5893 A) and in the field of eyepiece, 62
fringes are seen. Now the source is replaced with a mercury source and a green filter of (. = 5461A)is
placed in front of it. The number of fringes now seen will be

(a) 54 (b) 71 (c) 67 (d) 81

4.21 When a thin glass plate (4 = 1.5)is introduced in one of the arms of Michelson interferometer using
light of wavelength 58904, there is a shift of 10 fringes. The thickness of the plate will be
(@) 5.89x10™° m (b) 5.48x10™* m
(c) 5.89x107° m (d) none of these.
4.22 In a biprism experiment when a glass plate of thickness t and refractive index p is placed in the path
of one of the interfering ray (wave) the entire system shifts through a distance given by
2d 2d D D
(@) 5 -t (b) D+t (c) o7 M~ Dt (d) o+ Dt
Answers
41 () 4200 w0 a3 14 (3 50" e
47 (9 48 (0 19 () 410 (o) 411 (a) 412 ()
413 (@) - 414 (p) 4.15 (c) 416 (a) 417 (d)

4.19 ® 420 (g 421 (a) 422 (c)

418 ()




